Algebra Precalculus – Gaussian Proof for the Sum of Squares

algebra-precalculus

There is a famous proof of the Sum of integers, supposedly put forward by Gauss.

$$S=\sum\limits_{i=1}^{n}i=1+2+3+\cdots+(n-2)+(n-1)+n$$

$$2S=(1+n)+(2+(n-2))+\cdots+(n+1)$$

$$S=\frac{n(1+n)}{2}$$

I was looking for a similar proof for when $S=\sum\limits_{i=1}^{n}i^2$

I've tried the same approach of adding the summation to itself in reverse, and I've found this:

$$2S=(1^2+n^2)+(2^2+n^2+1^2-2n)+(3^2+n^2+2^2-4n)+\cdots+(n^2+n^2+(n-1)^2-2(n-1)n$$

From which I noted I could extract the original sum;

$$2S-S=(1^2+n^2)+(2^2+n^2-2n)+(3^2+n^2-4n)+\cdots+(n^2+n^2-2(n-1)n-n^2$$

Then if I collect all the $n$ terms;

$$2S-S=n\cdot (n-1)^2 +(1^2)+(2^2-2n)+(3^2-4n)+\cdots+(n^2-2(n-1)n$$

But then I realised I still had the original sum in there, and taking that out mean I no longer had a sum term to extract.

Have I made a mistake here? How can I arrive at the answer of $\dfrac{n (n + 1) (2 n + 1)}{6}$ using a method similar to the one I expound on above? I.e following Gauss' line of reasoning?

Best Answer

There is a more beautiful Gauss-style proof that involves writing the numbers in triangles instead of in a line.

Gauss style proof

I leave the details to you.

Related Question