[Math] G acts on G/H by left muliplication – Orbit, stabilizer and fixed points

group-actionsgroup-theoryproof-verification

Reference: p. 8 http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/gpaction.pdf

enter image description here

This PDF doesn't unfold all the steps hence can someone please notify me of bungles? Thank you.

I tried: $G$ acts on the left cosets of $H$ by left multiplication, so $ g \cdot xH = gxH $

(1.) $\mathrm{orb}_{xH} := \{g \cdot xH : g\in G\} = {\{gxH : g \in G\}}.$ $\because g,x \in G \therefore gx \in G \text{ hence } = \{(gx)H : g \in G\} = G/H .$

I understand $ \color{red}{\mathrm{Orb}_{\{H\}} := \{g \cdot \{H\} : g \in G\}} $. But how is my work overhead?

3.$\text{}$ How does $\mathrm{Stab}_{aH} = \{g : gaH = aH \} = \{g : a^{-1}ga \in H\} = \color{blue}{aHa^{-1}} $

I understand: $ \color{blue}{aHa^{-1} = \{h \in H : aha^{-1}\}}$

4.$\text{}$ How do you determine the fixed points craftily? I know the definition for $x$ to be a fixed point: $g \cdot x = x \; \forall g \in G$. Do I solve for $x$?

To boot, I tried from (3.) $g \cdot xH = xH \iff x^{-1}gx \in H \iff x \in H \text{ and } g \in H \iff G = H. $
But $g \cdot xH = xH $ isn't the definition of a fixed point?

Best Answer

For $1$ and $2$ take $g=ax^{-1}$ for whichever $a\in G$ you want.

For $3$, $\{g : x^{-1}gx\in H \} = \{g : gx\in xH \} =\{g : g\in xHx^{-1} \}=xHx^{-1}$.

For $4$, if $H\not= G$, we can find an $a\notin H$ and look at the coset $aH$. Then $a^{-1}$ sends $aH$ to $H$, and similarly $a$ sends $H$ to $aH$, so no coset can be fixed under the action of $G$.

Another alternative way to see $4$ would be to use $3$. Take any coset $xH$, and we have that $\text{Stab}_G(xH)=xHx^{-1}$. Since $xHx^{-1}$ has order $|H|$, if $|H|<|G|$, then $$|\mathcal{O}_{xH}|=[G:\text{Stab}_G(xH)]=[G:H]>1$$ so $xH$ is not a fixed point.

Related Question