Calculus – From Series ?(H_n – ln n – ? – 1/2n) to ?(1/2 + it)

calculusdefinite integralsintegrationriemann-zetasequences-and-series

Here is a pretty series

$$
\displaystyle \sum_{n=1}^{+ \infty} \left(H_{n}-\ln n-\gamma -\frac{1}{2n}\right)=\frac{1}{2} \left(1-\ln (2\pi)+\gamma\right) \tag{*}
$$

where $H_{n}:=\sum_{1}^{n} \frac{1}{k}$ are the harmonic numbers and $\gamma := \lim\limits_{n \to \infty} (H_n- \ln n)$ is the Euler constant.

$$ $$

Now just introduce a parameter in the general term of the series and you get a link with… the Riemann $\zeta$ function on the critical line!

Q 1. What proof would you give for (*)?

Q 2. What elements would you give to get the link with $\zeta\left(\frac{1}{2}+it\right)$?

Best Answer

Proof of (*)

Adding the four finite sums,

$$\sum_{k=1}^{n}H_{k}=(n+1)H_{n}-n,$$

$$\sum_{k=1}^{n}\ln{k}=\ln{n!},$$

$$\sum_{k=1}^{n}\gamma=\gamma\,n,$$

$$\sum_{k=1}^{n}\frac{1}{2k}=\frac12H_{n},$$

gives us a representation of the $n$-th partial sum for the infinite series. Writing the infinite series as the limit of partial sums, we get:

$$\begin{align} S &=\sum_{k=1}^{\infty}\left(H_{k}-\ln{n}-\gamma-\frac{1}{2k}\right)\\ &=\lim_{n\to\infty}\sum_{k=1}^{n}\left(H_{k}-\ln{n}-\gamma-\frac{1}{2k}\right)\\ &=\lim_{n\to\infty}\left((n+1)H_{n}-n-\ln{n!}-\gamma\,n-\frac12H_{n}\right)\\ &=\lim_{n\to\infty}\left(\left(n+\frac12\right)H_{n}-(1+\gamma)n-\ln{n!}\right). \end{align}$$

Use Stirling's approximation for the factorial to obtain an asymptotic formula for the log-factorial term in the series:

$$n!\sim\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\\ \implies \ln{n!}\sim\ln{\left(\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\right)}=\left(n+\frac12\right)\ln{n}-n+\frac12\ln{(2\pi)}.$$

Then,

$$\begin{align} S &=\lim_{n\to\infty}\left(\left(n+\frac12\right)H_{n}-(1+\gamma)n-\ln{n!}\right)\\ &=\lim_{n\to\infty}\left(\left(n+\frac12\right)H_{n}-(1+\gamma)n-\left(n+\frac12\right)\ln{n}+n-\frac12\ln{(2\pi)}\right)\\ &=\lim_{n\to\infty}\left(\left(n+\frac12\right)H_{n}-\gamma\,n-\left(n+\frac12\right)\ln{n}\right)-\frac12\ln{(2\pi)}\\ &=\lim_{n\to\infty}\left(n\left(H_{n}-\gamma-\ln{n}\right)+\frac12\left(H_{n}-\ln{n}\right)\right)-\frac12\ln{(2\pi)}\\ &=\lim_{n\to\infty}n\left(H_{n}-\gamma-\ln{n}\right)+\frac12\lim_{n\to\infty}\left(H_{n}-\ln{n}\right)-\frac12\ln{(2\pi)}\\ &=\lim_{n\to\infty}n\left(H_{n}-\gamma-\ln{n}\right)+\frac12\gamma-\frac12\ln{(2\pi)}\\ &=\frac12+\frac12\gamma-\frac12\ln{(2\pi)}.~~~\blacksquare \end{align}$$


Appendix:

Using the asymptotic series for the digamma function given by Eq.16 on this Wolfram Mathworld page,

$$\begin{align} \lim_{n\to\infty}n\left(H_{n}-\gamma-\ln{n}\right) &=\lim_{n\to\infty}n\left(\Psi{(n+1)}-\ln{n}\right)\\ &=\lim_{n\to\infty}n\left(\frac{1}{2n}-\sum_{\ell=1}^{\infty}\frac{B_{2\ell}}{2\ell n^{2\ell}}\right)\\ &=\frac12-\lim_{n\to\infty}\sum_{\ell=1}^{\infty}\frac{B_{2\ell}}{2\ell n^{2\ell-1}}\\ &=\frac12. \end{align}$$

Related Question