Fourier Analysis – Fourier Transform of Even and Odd Functions

analysisfourier analysisfourier transformfunctional-analysis

How can I show that the Fourier transform of an even integrable function $f\colon \mathbb{R}\to\mathbb{R}$ is even real-valued function? And the Fourier transform of an odd integrable function $f\colon \mathbb{R}\to\mathbb{R}$ is odd and purely imaginary function?

Best Answer

Let $f: \mathbb{R} \to \mathbb{R}$ be an integrable function and let $\hat{f}$ denote its Fourier transform, i.e. $$ \hat{f}(\xi)=\int_\mathbb{R}e^{ix\xi}f(x)dx. $$ We have $$ \overline{\hat{f}(\xi)}=\hat{f}(-\xi)=\int_\mathbb{R}e^{-ix\xi}f(x)dx=\int_\mathbb{R}e^{iy\xi}f(-y)dy. $$ If $f$ is even then $$ \overline{\hat{f}(\xi)}=\hat{f}(-\xi)=\int_\mathbb{R}e^{iy\xi}f(y)dy=\hat{f}(\xi), $$ i.e. $\hat{f}$ is an even real-valued function.

If $f$ is odd then $$ \overline{\hat{f}(\xi)}=\hat{f}(-\xi)=\int_\mathbb{R}-e^{iy\xi}f(y)dy=-\hat{f}(\xi), $$ i.e. $\hat{f}$ is an odd purely imaginary function.

Related Question