[Math] Fourier transform of 1/cosh

complex-analysisfourier analysisfourier transformresidue-calculus

How do you take the Fourier transform of
$$
f(x) = \frac{1}{\cosh x}
$$
This is for a complex class so I tried expanding the denominator and calculating a residue by using the rectangular contour that goes from $-\infty$ to $\infty$ along the real axis and $i \pi +\infty$ to $i \pi – \infty$ to close the contour (with vertical sides that go to 0). Therefore, I tried to calculate the residue at $\frac{i \pi}{2}$ of
$$
\frac{e^{-ikx}}{e^x + e^{-x}} $$ which will be give me the answer, but I don't know how to do this. Thanks for the help!

Best Answer

First, let's compute the FT of $\text{sech}{(\pi x)}$, which may be derived using the residue theorem. We simply set up the Fourier integral as usual and comvert it into a sum as follows:

$$\begin{align}\int_{-\infty}^{\infty} dx \, \text{sech}{(\pi x)} \, e^{i k x} &= 2 \int_{-\infty}^{\infty} dx \frac{e^{i k x}}{e^{\pi x}+e^{-\pi x}}\\ &= 2 \int_{-\infty}^0 dx \frac{e^{i k x}}{e^{\pi x}+e^{-\pi x}} + 2 \int_0^{\infty}dx \frac{e^{i k x}}{e^{\pi x}+e^{-\pi x}}\\ &= 2 \sum_{m=0}^{\infty} (-1)^m \left [\int_0^{\infty}dx \, e^{-[(2 m+1) \pi+i k] x} +\int_0^{\infty}dx \, e^{-[(2 m+1) \pi-i k] x} \right ] \\ &= 2 \sum_{m=0}^{\infty} (-1)^m \left [\frac{1}{(2 m+1) \pi-i k} + \frac{1}{(2 m+1) \pi+i k} \right ]\\ &= 4\pi \sum_{m=0}^{\infty} \frac{(-1)^m (2 m+1)}{(2 m+1)^2 \pi^2+k^2}\\ &= \frac{1}{2 \pi}\sum_{m=-\infty}^{\infty} \frac{(-1)^m (2 m+1)}{\left (m+\frac12\right)^2+\left(\frac{k}{2 \pi}\right)^2} \end{align}$$

By the residue theorem, the sum is equal to the negative sum of the residues at the non-integer poles of

$$\pi \csc{(\pi z)} \frac{1}{2 \pi}\frac{2 z+1}{\left ( z+\frac12\right)^2+\left (\frac{k}{2 \pi}\right)^2}$$

which are at $z_{\pm}=-\frac12 \pm i \frac{k}{2 \pi}$. The sum is therefore

$$-\frac12\csc{(\pi z_+)} - \frac12 \csc{(\pi z_-)} = -\Re{\left [\frac{1}{\sin{\pi \left (-\frac12+i \frac{k}{2 \pi}\right )}}\right ]} = \text{sech}{\left ( \frac{k}{2}\right)}$$

By this reasoning, the FT of $\operatorname{sech}{x}$ is $\pi\, \text{sech}{\left ( \frac{\pi k}{2}\right)}$.