[Math] First Four Nonzero Terms of Taylor Series

calculustaylor expansion

I'm not acing Calculus II and while this problem might be easy to some, it's not to me. Any help will do.

Problem: Find the first nonzero terms of the Taylor Series for $f(x) = \cos x$ where
$$a = {\pi\over 6}$$

My work:

\begin{array}{rlrll}
f(x) =& \cos x & f(a) =& \cos {\pi\over 6} &= {\sqrt 3\over 2} \\
f'(x) =& – \sin x & f'(a) =& – \sin {\pi\over 6} &= -{1\over 2} \\
f ''(x) =& – \cos x & f ''(a) =& – \cos {\pi\over 6} &= -{\sqrt 3\over 2} \\
f ''' (x) =& – (-\sin x) = \sin x & f ''' (a) =& \sin {\pi\over 6} &= {1\over 2} \\
f^4(x) =& \cos x & f^4(a) =& \cos {\pi\over 6} &= {\sqrt 3\over 2}
\end{array}

Taylor Series:

$$a_n={f^n(a)\over n!}(x-a)^n$$

$$\eqalign{
& \frac{{{f^0}(a)}}{{0!}}{(x – a)^0} + \frac{{f'(a)}}{{1!}}{(x – a)^1} + \frac{{f''(a)}}{{2!}}{(x – a)^2} + \frac{{f'''(a)}}{{3!}}{(x – a)^3} + \frac{{{f^4}(a)}}{{4!}}{(x – a)^4} \cr
& = \frac{1}{{0!}}\;\frac{{\sqrt 3 }}{2}(1) + \left( { – \frac{1}{2}} \right)\frac{1}{{1!}}\left( {x – \frac{\pi }{6}} \right) + \left( { – \frac{{\sqrt 3 }}{2}} \right)\frac{1}{{2!}}{\left( {x – \frac{\pi }{6}} \right)^2} + \frac{1}{{3!}}\frac{1}{2}{\left( {x – \frac{\pi }{6}} \right)^3} + \frac{1}{{4!}}\frac{{\sqrt 3 }}{2}{\left( {x – \frac{\pi }{6}} \right)^4} \cr
& = \;\frac{{\sqrt 3 }}{2} – \frac{1}{2}\left( {x – \frac{\pi }{6}} \right) – \frac{{\sqrt 3 }}{2}\frac{1}{2}{\left( {x – \frac{\pi }{6}} \right)^2} + \frac{1}{2}\frac{1}{{3 \cdot 2}}{\left( {x – \frac{\pi }{6}} \right)^3} + \frac{{\sqrt 3 }}{2}\frac{1}{{4 \cdot 3 \cdot 2}}{\left( {x – \frac{\pi }{6}} \right)^4} \cr
& = \;\frac{{\sqrt 3 }}{2} – \frac{1}{2}\left( {x – \frac{\pi }{6}} \right) – \frac{{\sqrt 3 }}{4}{\left( {x – \frac{\pi }{6}} \right)^2} + \frac{1}{{12}}{\left( {x – \frac{\pi }{6}} \right)^3} + \frac{{\sqrt 3 }}{{48}}{\left( {x – \frac{\pi }{6}} \right)^4} \cr} $$

Is this problem solved correctly? If not, where did I go wrong? If you have any tips for the Taylor Series I'll take it also. Thank you.

Best Answer

Recall that $f(h+a)=\cos(h+(\pi/6))=\cos(h)\cos(\pi/6)-\sin(h)\sin(\pi/6)$. Hence, $$2f(h+a)=\sqrt3\cos(h)-\sin(h). $$ Now, $\cos(h)=1-\frac12h^2+O(h^4)$ and $\sin(h)=h-\frac16h^3+O(h^4)$, hence $$ 2f(h+a)=\sqrt3(1-\tfrac12h^2)-(h-\tfrac16h^3)+O(h^4). $$ The first four terms of the expansion of $f(h+(\pi/6))$ are the $1$, $h$, $h^2$ and $h^3$ terms, namely, $$ f\left(h+\frac\pi6\right)=\frac{\sqrt3}2-\frac12h-\frac{\sqrt3}4h^2+\frac1{12}h^3+O(h^4). $$ More generally, the $h^{2n}$ term of the Taylor expansion is $$\frac{(-1)^n\sqrt3}{2(2n)!}$$ and the $h^{2n+1}$ term of the Taylor expansion is $$\frac{(-1)^{n+1}}{2(2n+1)!}.$$

Related Question