[Math] Finding the $nth$ partial sum for $e^{-n}$

analysiscalculusintegrationreal-analysissequences-and-series

Here is the question:

$$\displaystyle \sum_{n=1}^{\infty} e^{-n}$$

Instead of using the formula of $\large\frac{1}{1-r}$ I want to try to get the partial sums.

$S_1 = e^{-1}$

$S_2 = e^{-1} + e^{-2} = \frac{e + 1}{e^2}$

$S_3 = e^{-1} + e^{-2} + e^{-3} = \frac{e^2 + e + 1}{e^3}$

$S_4 = e^{-1} + e^{-2} + e^{-3} + e^{-4} = \frac{e^3 + e^2 + e + 1}{e^4}$

How can we get $S_n$ for this?

What I see:

$$\displaystyle S_n = \frac{\displaystyle 1+\sum_{k=1}^{n-1} e^k }{e^{n}}$$
$$\displaystyle \sum_{n=1}^{\infty} e^n = T$$

But the series in the numerator is divergent since $|r| = |e| = e > 1$

Best Answer

$$S_n=\frac{1}{e}+\frac{1}{e^2}+\frac{1}{e^3}+\cdots\frac{1}{e^{n-1}}+\frac{1}{e^n}$$ $$\frac{S_n}{e}=\frac{1}{e^2}+\frac{1}{e^3}+\cdots\frac{1}{e^{n-1}}+\frac{1}{e^n}+\frac{1}{e^{n+1}}$$

$$\frac{S_n}{e}-S_n=S_n\left(\frac{1}{e}-1\right)=\frac{1}{e^{n+1}}-\frac{1}{e}$$

$$\Rightarrow S_n = \frac{ e^{-(n+1)}-e^{-1} }{e^{-1}-1}$$

Also notice that $$\lim_{n \to \infty }S_n=\frac{1}{e-1}$$