[Math] Finding the matrix of a linear transformation from an upper triangular matrix to an upper triangular matrix.

linear algebralinear-transformationsmatrices

The question that I am trying to solve is as follows:

Find the matrix $A$ of the linear transformation
$T(M)=
\begin{bmatrix}
7 & 3 \\
0 & 1
\end{bmatrix}
M$
from $U^{2×2}$ to $U^{2×2}$ (upper triangular matrices) with respect to the basis
$\left\{ \begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix},\begin{bmatrix}1&1\\ 0&0\end{bmatrix},\begin{bmatrix}0&0\\0&1\end{bmatrix}\right\}$

$A=\begin{bmatrix} \cdot&\cdot&\cdot\\\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot\end{bmatrix}$

I don't know how to interpret this question. I would have thought that the matrix $A$ is $\begin{bmatrix}
7 & 3 \\
0 & 1
\end{bmatrix}$ because that is the matrix which defines the linear transformation $T$. I am surprised that the required answer is $A\in M_{3\times 3}$. How can a basis with elements $\in M_{2\times 2}$ form a matrix $\in M_{3\times 3}$?

Best Answer

Upper triangular matrices

$ \begin{bmatrix} a&b\\ 0&c \end{bmatrix} $

form a vector space with canonical basis:

$ e_1=\begin{bmatrix} 1&0\\ 0&0 \end{bmatrix} \quad e_2=\begin{bmatrix} 0&1\\ 0&0 \end{bmatrix} \quad e_3=\begin{bmatrix} 0&0\\ 0&1 \end{bmatrix} $

that is isomorphic to $\mathbb{R}^3$ by:

$ e_1\rightarrow\vec e_1=\begin{bmatrix} 1\\0\\0 \end{bmatrix} \quad e_2\rightarrow\vec e_2=\begin{bmatrix} 0\\1\\0 \end{bmatrix} \quad e_3\rightarrow \vec e_3=\begin{bmatrix} 0\\0\\1 \end{bmatrix} $

Your linear transformation $T$ is defined as a matrix multiplication:

$ T(M)=\begin{bmatrix} 7&3\\ 0&1 \end{bmatrix} \begin{bmatrix} a&b\\ 0&c \end{bmatrix} = \begin{bmatrix} 7a&7b+3c\\ 0&c \end{bmatrix} $ so, in this canonical representation, it is given by the matrix $T_e$ such that:

$ T_e\vec M=\begin{bmatrix} 7&0&0\\ 0&7&3\\ 0&0&1 \end{bmatrix} \begin{bmatrix} a\\ b\\ c \end{bmatrix}= \begin{bmatrix} 7a\\ 7b+3c\\ c \end{bmatrix} $

Now you want a representation of the same transformation in a new basis:

$ e'_1= \begin{bmatrix} 1&0\\ 0&0 \end{bmatrix} \rightarrow\vec e'_1=\begin{bmatrix} 1\\0\\0 \end{bmatrix} \quad e'_2=\begin{bmatrix} 1&1\\ 0&0 \end{bmatrix}\rightarrow\vec e'_2=\begin{bmatrix} 1\\1\\0 \end{bmatrix} \quad e'_3=\begin{bmatrix} 0&0\\ 0&1 \end{bmatrix}\rightarrow \vec e'_3=\begin{bmatrix} 0\\0\\1 \end{bmatrix} $

This transformation of basis is represented by the matrices

$ S= \begin{bmatrix} 1&1&0\\ 0&1&0\\ 0&0&1 \end{bmatrix} \qquad S^{-1}= \begin{bmatrix} 1&-1&0\\ 0&1&0\\ 0&0&1 \end{bmatrix} $

So the matrix that represents the transformation $T$ in the new basis is:

$ T_{e'}=S^{-1}T_eS= \begin{bmatrix} 7&0&-3\\ 0&7&3\\ 0&0&1 \end{bmatrix} $

Related Question