Calculus – Finding Potential Function for a Vector Field

calculusmultivariable-calculusVector Fields

Let $\mathbf{F}(x,y,z) = y \hat{i} + x \hat{j} + z^2 \hat{k}$ be a vector field. Determine if its conservative, and find a potential if it is.

Attempt at solution:

We have that $\frac{\partial F_1}{\partial y} = 1 = \frac{\partial F_2}{\partial x} $, $\frac{\partial F_1}{\partial z} = 0 = \frac{\partial F_3}{\partial x}$, $\frac{\partial F_2}{\partial z} = 0 = \frac{\partial F_3}{\partial y}$, so the potential might exist.

Now we need to find a function $f$ such that $\nabla f = \mathbf{F}$.

For the first component, this means that $\frac{\partial f(x,y,z)}{\partial x} = y $, or after integrating, $f(x,y,z) = yx + C(y,z)$. Now I don't know how to determine the constant of integration $C(y,z)$, and I don't understand if I should add another constant when I integrate the second component.

For the second component, we have that $f(x,y,z) = xy + D(x,z)$, and for the third $f(x,y,z) = \frac{z^3}{3} + E(x,y)$. What now?

Any help please? In my textbook this is explained really in a terrible way.

Best Answer

You don't have to find the integration constant immediately. Keep proceeding as follows.

After you determined that $f(x,y,z) = xy+g(y,z)$, differentiate with respect to $y$.

This gives $\frac{\partial f}{\partial y}=x+\frac{\partial g}{\partial y}=F_y=x$.

Thus, $\frac{\partial g}{\partial y}=0$, which implies that $g$ is a function of $z$ only. In turn, this means that $f(x,y,z)=xy+h(z)$.

Next, differentiate $f$ with respect to $z$.

This gives $\frac{\partial f}{\partial z}=h'(z)=F_z=z^2$.

Thus, $h(z)=\frac13z^3+C$.

Finally, $f(x,y,z)=xy+h(z)=xy+\frac13z^3+C$.

To check this, we have $$\vec F=\nabla f(x,y,z)$$

$$=\hat x\frac{\partial f}{\partial x}+\hat y\frac{\partial f}{\partial y}+\hat z\frac{\partial f}{\partial z}$$

$$=\hat xy+\hat yx+\hat zz^2$$which completes the task!

Related Question