[Math] Finding normalised eigenvectors…

eigenvalues-eigenvectorsmatrices

I'm trying to find the eigenvector/eigenvalues of the $2\times2$ matrix:
\begin{pmatrix}4 & 2 \\ 2 & 3 \end{pmatrix}

This is my work:

$$\det(A-\lambda I) = \lambda^2-7 \lambda+8=0 \iff \lambda=\frac{7+\sqrt{17}}{2} \ \lor \ \lambda= \frac{7-\sqrt{17}}{2}$$

$x_1$ (eigenvector)=\begin{pmatrix} (1+\sqrt17)/4 \\ k \end{pmatrix} , where k is any number. How do I "NORMALISE" this eigenvector?
Can someone check my working because I'm getting weird answers.

Best Answer

If $\mathbf{x}$ is an eigenvector of $A$ with eigenvalue $\lambda$, then $A\mathbf{x}=\lambda\mathbf{x}$ and $(A-\lambda I)\mathbf{x}=\mathbf{0}$.

First, find the eigenvector corresponding to the eigenvalue $λ=\frac{7+\sqrt{17}}{2}$:

$$\begin{align*} &\quad\quad\quad\quad\left(\begin{array}{c|c} A-\lambda I & 0 \end{array}\right)\quad\quad\text{insert your }A\text{ and }\lambda\\ &=\left(\begin{array}{cc|c} 4-\tfrac{7+\sqrt{17}}{2} & 2 & 0 \\ 2 & 3-\tfrac{7+\sqrt{17}}{2} & 0 \end{array}\right)\quad\quad\text{compute the differences}\\ &\implies \left(\begin{array}{cc|c} \tfrac{1-\sqrt{17}}{2} & 2 & 0 \\ 2 & \tfrac{-1-\sqrt{17}}{2} & 0 \end{array}\right)\quad\quad\text{multiply the first row by }\tfrac{4}{1-\sqrt{17}}\\ &\implies \left(\begin{array}{cc|c} 2 & \tfrac{8}{1-\sqrt{17}} & 0 \\ 2 & \tfrac{-1-\sqrt{17}}{2} & 0 \end{array}\right)\quad\quad\text{multiply the first fraction by }1+\sqrt{17}\\ &\implies \left(\begin{array}{cc|c} 2 & \tfrac{8(1+\sqrt{17})}{-16} & 0 \\ 2 & \tfrac{-1-\sqrt{17}}{2} & 0 \end{array}\right)\quad\quad\text{simplify the first fraction}\\ &\implies \left(\begin{array}{cc|c} 2 & \tfrac{-1-\sqrt{17}}{2} & 0 \\ 2 & \tfrac{-1-\sqrt{17}}{2} & 0 \end{array}\right)\quad\quad\text{subtract the first row from the second}\\ &\implies \left(\begin{array}{cc|c} 4 & -1-\sqrt{17} & 0 \\ 0 & 0 & 0 \end{array}\right)\quad\quad\text{deduce the solution}\\ &\implies \mathbf{x}=k\pmatrix{1+\sqrt{17}\\4}\end{align*}$$

Now, normalize it by

$$\hat{\mathbf{x}}=\frac{\mathbf{x}}{||\mathbf{x}||}$$

and do the same thing for the second eigenvalue.

Related Question