[Math] Finding Matrix Representation

linear algebramatrices

Problem: Let T: $\mathbb{R}^3\rightarrow\mathbb{R}^3$ be a linear map given by

$$T\left[ \begin{matrix} x\\y\\ z\end{matrix} \right]= \left[ \begin{matrix} 3x-y\\z-x\\z-y\\\end{matrix} \right]$$

  1. Find the Matrix representation of T with respect to the canonical basis of $\mathbb{R}^3$, and call it A.

I am not sure how this works. So the cananical basis of $\mathbb{R}^3$ is ${(1,0,0),(0,1,0),(0,0,1)}$ But I am unsure how to get a matrix represenation from a linear operator. Any help is appreciated.

Best Answer

Let $e_1=(1,0,0)$, $e_2=(0,1,0)$, and $e_3=(0,0,1)$.

From the definition of $T$: $$ T(e_1) =\left[\matrix{3\cr -1\cr 0 }\right],\quad T(e_2) =\left[\matrix{-1\cr 0\cr -1 }\right],\quad T(e_3) =\left[\matrix{0\cr 1\cr 1 }\right]. $$ For an arbitrary vector $v=\left[\matrix{a\cr b\cr c }\right] =a e_1+b e_2+c e_3$, we have using the linearity of $T$ $$\eqalign{ T(v) &=T(a e_1+b e_2+c e_3)\cr &=a T(e_1)+b T(e_2)+c T(e_3)\cr &=a \left[\matrix{3\cr -1\cr 0 }\right]+ b\left[\matrix{-1\cr 0\cr -1 }\right]+ c\left[\matrix{0\cr 1\cr 1 }\right]\cr &= \left[\matrix{3a-1\cdot b+0\cdot c\cr -1\cdot a+0\cdot b+1\cdot c\cr 0\cdot a+1\cdot -b+1\cdot c }\right]\cr &= \left[\matrix{3&-1&0 \cr -1&0& 1\cr 0&-1& 1}\right] \left[\matrix{a\cr b\cr c}\right].\cr } $$ So the matrix representation of $T$ is $\left[\matrix{3&-1&0 \cr -1&0&1\cr 0&-1&1}\right]$.

Note that the $i^{\rm th}$ column of the matrix representing $T$ is the vector $T(e_i)$. So, we can get the desired!