[Math] Finding Inverse Laplace Transform using Taylor Series

laplace transform

Find the inverse Laplace transform

$F(t)=\mathcal{L}^{-1}(s^{-\frac{1}{2}}e^{-\frac{1}{s}})$

using each of the following techniques:

  1. Expand the exponential in a Taylor series about s=∞, and take inverse Laplace transforms term by term (this is allowable since the series is uniformly convergent.).

  2. Sum the resultant series in terms of elementary functions.

Best Answer

We know that $$ \displaystyle \mathcal{L} \{t^{n-1}\} = \frac{\Gamma(n)}{s^{n}}, n>0 ,s>0 $$ $$ \frac{1}{s^n} = \frac{\displaystyle \mathcal{L} \{t^{n-1}\}}{\Gamma(n)} $$ $$ \displaystyle \mathcal{L^{-1}} \{\frac{1}{s^n}\} = \frac{t^{n-1}}{\Gamma(n)} $$ Therefore $$ \displaystyle \mathcal{L^{-1}} \{ s^{-1/2} e^{-1/s} \} = \displaystyle \mathcal{L^{-1}} \{ \frac{1}{s^{1/2}} - \frac{1}{s^{3/2}} + \frac{1}{(2!s^{5/2})} + ... + (-1)^{n}\frac{1}{n! s^{n+\frac{1}{2}}} \} $$ $$ = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \displaystyle \mathcal{L^{-1}} \{\frac{1}{s^{n+\frac{1}{2}}}\} $$ $$ = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{t^{n-\frac{1}{2}}}{\Gamma(n+\frac{1}{2})} $$ But after this I don't know how to simplify