[Math] Finding a row-reduced echelon matrix.

linear algebramatrices

$A =\begin{pmatrix} 1& 2& 1& 0\\ -1 &0 &3 &5\\ 1& -2& 1& 1\end{pmatrix}$.
I should find a row-reduced echelon matrix $R$ which is row equivalent to $A$ and an invertible $3 \times 3$ matrix $P$ such that $R = PA$.

I know that if a matrix is row equivalent to another that means that we can obtain such a matrix by using elementary row operations. But how should i apply this to such question?

Best Answer

This another approach, however; Don's way explains it to you in a brief solid form.

$A =\begin{pmatrix} 1& 2& 1& 0\\ -1 &0 &3 &5\\ 1& -2& 1& 1\end{pmatrix}\xrightarrow{R_1+R_2\mapsto R_2}\begin{pmatrix} 1& 2& 1& 0\\ 0 &2 &4 &5\\ 1& -2& 1& 1\end{pmatrix} \xrightarrow{-R_1+R_3\mapsto R_3}\begin{pmatrix} 1& 2& 1& 0\\ 0 &2 &4 &5\\ 0& -4& 0& 1\end{pmatrix}\\\xrightarrow{-R_2+R_1\mapsto R_1}\begin{pmatrix} 1& 0& -3& -5\\ 0 &2 &4 &5\\ 0& -4& 0& 1\end{pmatrix}\xrightarrow{2R_2+R_3\mapsto R_3}\begin{pmatrix} 1& 0& -3& -5\\ 0 &2 &4 &5\\ 0& 0& 8& 11\end{pmatrix}\xrightarrow{\frac{-1}{2}R_3+R_2\mapsto R_2}\begin{pmatrix} 1& 0& -3& -5\\ 0 &2 &0 &-0.5\\ 0& 0& 8& 11\end{pmatrix}\xrightarrow{\frac{3}{8}R_3+R_1\mapsto R_1}\begin{pmatrix} 1& 0& 0& \frac{-13}{8}\\ 0 &2 &0 &-0.5\\ 0& 0& 8& 11\end{pmatrix}$

and the last matrix is the row-reduced echelon form of $A$.