[Math] Finding a basis for x+y+z=0

linear algebra

Let $V \neq \{0\}$ be a vecotspace and for $x,y,z\in V\setminus\{0\}$ is:

$x+y+z=0$

I'd like to find a basis for $span\{x,y,z\}$

$x=-y-z$ solves the above system for any $y,z$. So we could say $v_1=(2,-1,-1)$ is a basisvector. But we could also do:

$y=-x-z$ and we would get $v_2=(-1,2,-1)$. And of course we could also say, that $v_3=(-1,-1,2)$ is a basisvector.

So $L_1=span\{v_1\}$ or $L_2=span\{v_2\}$ or $L_3=span\{v_3\}$ would span the solution set for $x+y+z=0$.

But what I'm a bit confused about is, that $L_i\neq L_j$ for $i\neq j$. Should we actually get $L_i=L_j$ for any $i,j$?

What's going on here? What's the difference between the $L_i$? I mean I can see that we can basically rotate the coordinates and get the above $L_i$'s but I'm just not really satisfied with this here.

Can someone write me down the transfomration matrix for this?

Best Answer

If you're looking for a basis, you seem to make things more complicated than necessary.

I'd like to find a basis for this.

$x=-y-z$ solves the above system for any $y,z$.

From $\color{blue}{x=-y-z}$, you find that any vector $(\color{blue}{x},y,z) \in V$ is of the form: $$(\color{blue}{x},y,z) = (\color{blue}{-y-z},y,z) = y(-1,1,0)+z(-1,0,1)$$ meaning that any element can be written as a linear combination of $(-1,1,0)$ and $(-1,0,1)$. Note that these two vectors are linearly independent, thus they form a basis.

Related Question