[Math] Finding a basis for null and column space of a matrix

linear algebra

I need help computing $\mathrm{null}(A)$ and $\mathrm{col}(A)$

$$A =
\begin{bmatrix}
1 & 2 & 1 & 4 \\
1 & 1 & 1 & 3 \\
-1 & 1 & -1 & \ -1
\end{bmatrix}$$

I think I did $\mathrm{null}(A)$ correctly. I found the row reduced echelon form and found that $x_{1} = -x_{3} – 2x_{4}$ and that $x_{2} = -x_{4}$. I also found that $x_3, x_4$ are free.

So my basis for $\mathrm{null}(A)$ was

$$\left\{\begin{bmatrix}
-1 \\
0 \\
1 \\
0 \\
\end{bmatrix},
\begin{bmatrix}
-2 \\
-1 \\
0 \\
1 \\
\end{bmatrix}\right\}.$$

I do not know how to proceed.

Best Answer

For the column space: note that the reduced row-echelon form of $A$ is given by $$\mathrm{RREF}(A)=\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

To find the column space of $A$, we want to look at the columns in $A$ which have leading $1$'s in $\mathrm{RREF}(A)$. Since columns one and two have leading $1$'s, then that tells us that $$\left\{\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}\right\}$$ forms a basis for $\mathrm{col}(A)$.

Moreover, the entries in columns three and four tell us exactly how to write said columns as a linear combination of the basis:

$$\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}=1\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}+0\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix},$$ $$\begin{bmatrix} 4 \\ 3 \\ -1 \end{bmatrix}=2\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}+1\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}.$$ Thus, columns three and four are indeed in $$\mathrm{span}\left\{\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}\right\},$$ and $\left\{\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}\right\}$ is a linearly independent set (if not, $\mathrm{RREF}(A)$ would not have a leading $1$ in both of the first two columns).