[Math] Find the volume solid bounded by surfaces $xy$, $z = 2(x^2+y^2)$ and $x^2+y^2 = 2y$

multiple integralmultivariable-calculusvolume

Find the volume solid bounded by surfaces $xy$, $z = 2(x^2+y^2)$ and $x^2+y^2 = 2y$.

I've tried to simply transform to cylindrical coordinates, and my answer was $6 \pi$. But the correct answer shows $3 \pi$. Where is my mistake?

$z = 0$ – ($xy$ plane) until $z = 2 r^2$ (paraboloid);

$r = 2 \sin \phi$;

$V = \int_{0}^{2\pi}\int_{0}^{2\sin\phi}\int_{0}^{2r^2}\,dz\,rdr\,d\phi$

Best Answer

Since the graph of $r = 2\sin \phi$ for $\phi \in [\pi,2\pi]$ overlaps with that for $\phi \in [0,\pi]$,

graph of r = 2 sin phi
graph from spark notes

the upper limit for $\phi$ should be $\pi$ instead of $2 \pi$.

\begin{align} V &= \int_{0}^{\pi}\int_{0}^{2\sin\phi}\int_{0}^{2r^2}\,dz\,rdr\,d\phi \\ &= \int_{0}^{\pi}\int_{0}^{2\sin\phi}2r^3 dr\,d\phi \\ &= \int_{0}^{\pi} \frac{(2 \sin \phi)^4}{2} \,d\phi \\ &= 8\int_{0}^{\pi} \sin^4 \phi \,d\phi \\ &= 16 \int_{0}^{\pi/2} \sin^4 \phi \,d\phi \quad (\text{symmetry of sine}: \sin\left(\frac\pi2+\phi\right) = \sin\left(\frac\pi2-\phi\right)) \\ &= 16 \cdot \frac{3 \cdot 1}{4 \cdot 2} \cdot \frac{\pi}{2} \quad \text{(Wallis' formula)} \\ &= 3\pi \end{align}