[Math] Find the sum : $\sin^{-1}\frac{1}{\sqrt{2}}+\sin^{-1}\frac{\sqrt{2}-1}{\sqrt{6}}+\sin^{-1}\frac{\sqrt{3}-\sqrt{2}}{\sqrt{12}}+\cdots$

sequences-and-seriestrigonometry

Problem :

Find the sum of :

$$\sin^{-1}\frac{1}{\sqrt{2}}+\sin^{-1}\frac{\sqrt{2}-1}{\sqrt{6}}+\sin^{-1}\frac{\sqrt{3}-\sqrt{2}}{\sqrt{12}}+\cdots$$

My approach :

Here the $n$'th term is given by :

$$t_n = \sin^{-1}\left[\frac{\sqrt{n}-\sqrt{n-1}}{\sqrt{n}\sqrt{n+1}}\right]$$

From now how to proceed further please suggest thanks….

Best Answer

This is not an independent answer but a response to Lord Soth's speculation of a geometric proof.

A geometric proof

Consider two right-handed triangles $ABC$ and $ABD$ with base $1$ and heights $\sqrt{n}$ and $\sqrt{n-1}$. Let $\theta$ be the angle $\measuredangle CBD$. The area of the triangle $BCD$ can be computed in two ways:

  • $\frac12 |BC||BD| \sin\theta = \frac12 \sqrt{n+1} \sqrt{n} \sin\theta$
  • $\frac12 |CD||AB| = \frac12 ( \sqrt{n} - \sqrt{n-1} )$

Equate them gives us:

$$\sin \theta = \frac{\sqrt{n}-\sqrt{n-1}}{\sqrt{n}\sqrt{n+1}}$$

On the other hand,

$$\begin{align} \theta &= \measuredangle CBD = \measuredangle CBA - \measuredangle DBA\\ &= \sin^{-1}\frac{|AC|}{|BC|} - \sin^{-1}\frac{|AD|}{|BD|} = \sin^{-1}\sqrt{\frac{n}{n+1}} - \sin^{-1}\sqrt{\frac{n-1}{n}} \end{align}$$

We obtain

$$\sin^{-1}\left( \frac{\sqrt{n}-\sqrt{n-1}}{\sqrt{n}\sqrt{n+1}}\right) = \sin^{-1}\sqrt{\frac{n}{n+1}} - \sin^{-1}\sqrt{\frac{n-1}{n}}$$

and we have turned the original series into a telescoping one. The partial sum of the first $n$ terms of original series becomes the angle $\measuredangle ABC$. When $n \to \infty$, the line $BC$ becomes vertical and this geometrically justify why the limit of the series is $\frac{\pi}{2}$.

Related Question