[Math] Find the ratio of $\frac{\int_{0}^{1} \left(1-x^{50}\right)^{100} dx}{\int_{0}^{1} \left(1-x^{50}\right)^{101} dx}$

calculusintegration

$$I_1=\int_{0}^{1} \left(1-x^{50}\right)^{100} dx$$ and $$I_2=\int_{0}^{1} \left(1-x^{50}\right)^{101} dx$$ Then find $\frac{I_1}{I_2}$

I tried by subtracting $I_1$ and $I_2$

$$I_1-I_2=\int_{0}^{1}\left(1-x^{50}\right)^{100}\left(1-(1-x^{50}\right))dx$$ so

$$I_1-I_2=\int_{0}^{1} \left(1-x^{50}\right)^{100} x^{50} dx$$ Now using Integration by Parts we get

$$I_1-I_2= \left(1-x^{50}\right)^{100} \times \frac{x^{51}}{51}\bigg|_{0}^{1} -\int_{0}^{1} 100 \left(1-x^{50}\right)^{99} \times -50 x^{49} \times \frac{x^{51}}{51} dx$$
So
$$I_1-I_2=\frac{5050}{51} \times \int_{0}^{1}\left(1-x^{50}\right)^{99} x^{100} dx$$

Now $x^{100}=\left(1-x^{50}\right)^2-(1-x^{50}-x^{50})$ so

$$\frac{51}{5050}(I_1-I_2)=\int_{0}^{1} \left(1-x^{50}\right)^{99} \times \left(\left(1-x^{50}\right)^2-(1-x^{50})+x^{50}\right)dx=I_2-I_1+\int_{0}^{1} \left(1-x^{50}\right)^{99} x^{50} dx$$

Need a hint to proceed further.

Best Answer

Hint: Do integration by parts on $I_2$ first, then consider $I_1-I_2$.

Related Question