[Math] Find the radius of convergence of $\sum_{n=1}^\infty n!(2x-1)^n$

convergence-divergence

Find the radius of convergence of $\sum_{n=1}^\infty n!(2x-1)^n$

Now, by D'Alemberts Ratio test that implies (for convergence):

$\lim_{n\to\infty} \lvert \frac{(n+1)!(2x-1)(2x-1)^n}{n!(2x-1)^n} \rvert<1$

$\lim_{n\to\infty} \lvert (n+1)(2x-1)\rvert<1 $

$\lvert 2x-1\rvert<\lim_{n\to\infty} \lvert\frac{1}{(n+1)}\rvert$

$\lvert 2x-1\rvert < 0$

$\lvert 2x\rvert< 1$

$\frac{-1}{2}<x<\frac{1}{2}$

Therefore radius of convergence $(R) = \frac{1}{2}$

However upon inspection this answer is incorrect since for a value of $x = 0$, the sequence clearly diverges.

Can someone tell me where I have gone wrong?

Thanks a million!

Best Answer

Assuming you mean

$$\sum_{n=1}^\infty n!(2x-1)^n=\sum_{n=1}^\infty n!2^n(x-0.5)^n$$

Now use ratio test:

$$\frac{|a_{n+1}|}{|a_n|}=\frac{(n+1)!2^{n+1}}{n!2^n}=2(n+1)>1$$ Inequality holds for every $n$. Hence the radius of convergence is $0$.

Formally you have to calculate

$$r=\lim_{n\to \infty}\frac{1}{\frac{|a_{n+1}|}{|a_n|}}=\lim_{n\to \infty}\frac{1}{2(n+1)}=0$$

Edit: Your method is wrong, because: $$\lvert 2x-1\rvert < 0$$ This inequality is can never be true for any $x$ as the absolute value is never negative.