[Math] Find the limit of $x +\sqrt{x^2 + 8x}$ as $x\to-\infty$

infinitylimitsradicals

$$\lim_{x\to -\infty} x +\sqrt{x^2 + 8x}$$

I multiplied it by the conjugate:

$\frac{-8x}{x – \sqrt{{x^2} + 8x}}$

I can simplify further and get:

$\frac{-8}{1-\sqrt{1+\frac{8}{x}}}$

I think there is an error with my math, because the denominator should probably be a 2.

I'm stuck on this one. I graphed it so I know the limit is -4, but I can't calculate it. Thanks a lot for the help!

Best Answer

We have \begin{align} \lim_{x\to -\infty} x +\sqrt{x^2 + 8x}&=\lim_{x\to -\infty}\frac{(x +\sqrt{x^2 + 8x})(x -\sqrt{x^2 + 8x})}{x -\sqrt{x^2 + 8x}}\\ &=\lim_{x\to -\infty}\frac{x^2 -(x^2 + 8x)}{x -\sqrt{x^2 + 8x}}\\ &=\lim_{x\to -\infty}\frac{-8x}{x -\sqrt{x^2 + 8x}}\\ &=\lim_{x\to -\infty}\frac{\frac{-8x}{|x|}}{\frac{x}{|x|} -\sqrt{\frac{x^2}{|x|^2} + \frac{8x}{|x|^2}}}&& |\cdot |\text{ is needed since }x<0\\ &=\lim_{x\to -\infty}\frac{8}{-1 -\sqrt{1 - 8/x}}&&\text{since }|x|=-x\,\text{ for }x<0\\ &=\frac{8}{-1-\sqrt{1-0}}\\ &=\color{blue}{-4} \end{align}

Related Question