[Math] Find the inverse of a lower triangular matrix of ones

inverselinear algebramatrices

Find the inverse of the matrix $A=(a_{ij})\in M_n$ where
$$
\begin{cases}
a_{ij}=1, &i\geq j,\\
a_{ij}=0, &i<j.
\end{cases}
$$

The only method for finding inverses that I was taught was by finding the adjugate matrix. So $A^{-1}=\frac{1}{\det A}\operatorname{adj(A)}$

$$A=\begin{pmatrix}
1 & 0 &0 &\ldots &0\\
1 & 1 & 0 &\ldots &0\\
1 & 1 & 1 &\ldots &0\\
\vdots &\vdots & \vdots &\ddots & \vdots\\
1 & 1 &1 & \ldots &1 \end{pmatrix}$$

This is a triangular matrix so $\det A=1.$
To find the adjugate I first need to find the cofactor matirx$(C)$ of $A$.

$$C=\begin{pmatrix}
1&-1&0&0&\ldots &0\\
0 & 1& -1 &0&\ldots & 0\\
0 & 0 & 1 & -1&\ldots &0\\
0 & 0 & 0 &1 &\ldots &0\\
\vdots &\vdots &\vdots &\vdots&\ddots & \vdots\\
0 & 0 &0 &0 &\ldots &1\end{pmatrix}$$

$$C^T=\operatorname{adj}(A)=\begin{pmatrix}
1 & 0 & 0 & 0&\ldots &0\\
-1 & 1& 0 & 0 &\ldots &0\\
0&-1&1&0&\ldots &0\\
0& 0 &-1 &1 &\ldots&0\\
\vdots &\vdots &\vdots &\vdots &\ddots&\vdots\\
0&0&0&0&\ldots &1\end{pmatrix}=A^{-1}$$

Is this correct? Also, can I leave it like that or should I somehow write it more formally?

Best Answer

I would like to present a very simple solution by interpretation of these matrices as operators on $\mathbb{R^n}$ (which will surprise nobody...). Triangular matrix $A$ acts as a discrete integration operator:

For any $x_1,x_2,x_3,\cdots x_n$:

$$\tag{1}A (x_1,x_2,x_3,\cdots x_n)^T=(s_1,s_2,s_3,\cdots s_n)^T \ \ \text{with} \ \ \begin{cases}s_1&=&x_1&&&&\\s_2&=&x_1+x_2&&\\s_3&=&x_1+x_2+x_3\\...\end{cases}$$

(1) is equivalent to:

$$\tag{2}A^{-1} (s_1,s_2,s_3,\cdots x_n)^T=(x_1,x_2,x_3,\cdots x_n)^T \ \ \text{with} \ \ \begin{cases}x_1&=& \ \ s_1&&&&\\x_2&=&-s_1&+&s_2&&\\x_3&=&&&-s_2&+&s_3\\...\end{cases}$$

and it suffices now to "collect the coefficients" in the right order in order to constitute the inverse matrix.

(Thus the inverse operation is - in a natural way - a discrete derivation operator).