[Math] find the interval of convergence of Taylor series

calculuspower seriessequences-and-seriestaylor expansion

Represent the function $f(x)= x^{0.5}$ as a power series: $\displaystyle \sum_{n=0}^\infty c_n(x−6)^n$

Got that: $c_0$ = $\sqrt{6}$

$C_1=\dfrac{1}{2\sqrt{6}}$

But I couldn't find the interval of convergence. I thought we'd require $|x-6| < 1$.

Best Answer

Note that $$ \sqrt{6+h}=f(6+h)=\sum_{n=0}^\infty \frac{f^{(n)}(6)}{n!}(x-6)^n,\tag{1} $$ where, for $n\ge 1$, $$ f^{(n)}(a)=\frac{(-1)^{n-1}a^{-(2n-1)/2}\prod_{k=1}^n (2k-1)}{2^n}= \frac{(-1)^{n-1}a^{-(2n-1)/2}(2n)!}{4^n n!}. $$ Thus $$\sqrt{6+h}=\sum_{n=0}^\infty \frac{(-1)^{n-1}6^{-(2n-1)/2}(2n)!}{4^n (n!)^2}(x-6)^n=\sum_{n=0}^\infty a_n(x-6)^n. $$ Now, using the ratio test $$ \left|\frac{a_n}{a_{n+1}}\right|=\left|\frac{6\cdot 4 (n+1)^2}{2n(2n-1)}\right|\to 6, $$ as $n\to\infty$.

Hence the radius of convergence of $(1)$ is $R=6$.