[Math] Find the first three terms of the Maclaurin Series

calculus

Determine using multiplication/division of power series (and not via WolframAlpha!) the first three terms in the Maclaurin series for $y=\sec x$.

I tried to do it for $\tan(x)$ but then got kind of stuck. For our homework we have to do it for the $\sec(x)$. It is kind of tricky. Help would be awesome!

Thanks!

Taylor series for $\tan(x)$:
\begin{align*}
\tan (x)
&=\frac{\sin(x)}{\cos(x)}\\
&=\frac{x-\frac {x^3}6+\frac{x^5}{120}-\cdots}{1-\frac{x^2}2+\frac{x^4}{24}-\cdots}\\
&=x+\frac{x^3}3+\frac{2x^5}{15}+\cdots
\end{align*}

Best Answer

Let's write

$$1 = \cos{x} \sec{x} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots\right)(a_0 + a_1 x + a_2x^2 + \dots)$$

Expand the right hand side to find that

$$1 = 1 (a_0) + x (a_1) + x^2 \left(a_2 - a_0 \frac{1}{2!}\right) + x^3 \left(a_3 - a_1 \frac{1}{2!}\right) + x^4 \left(a_4 - a_2 \frac{1}{2!} + a_0 \frac{1}{4!}\right)+\dots$$

Equating coefficients gives (note that the left side is $1 + 0x + 0x^2 + 0x^3 + \dots$)

\begin{align*} 1 &= a_0 \\ 0 &= a_1 \\ 0 &= a_2 - \frac{a_0}{2} \\ 0 &= a_3 - \frac{a_1}{2} \\ 0 &= a_4 - \frac{a_2}{2} + \frac{a_0}{24} \end{align*}

Solving this gives $a_0 = 1$, $a_1 = 0 = a_3$, $a_2 = \frac{1}{2}$ and $a_4 = \frac{5}{24}$, or

$$\boxed{\sec{x} \approx 1 + \frac{1}{2} x^2 + \frac{5}{24} x^4}$$