[Math] Find the determinant of a Vandermonde-like matrix

determinantlinear algebra

I reduced a certain determinant to the following which has the form:
\begin{vmatrix}
1&1&\cdots & 1 \\
-a_1&a_2&\cdots &a_n\\
-a_1^{2}&a_2^{2}&\cdots&a_n^{2}\\
\vdots&\vdots&\ddots& \vdots\\
-a_1^{n-1}&a_2^{n-1}&\cdots&a_n^{n-1}\\
\end{vmatrix}

To clarify a bit, it is exactly the Vandermonde determinant except the first column is negative, while the $(1,1)$-entry is still $1$.

I think the key is to apply Vandermonde determinant yet I can't proceed. There may be a quick answer to this, however. Any hints?

Best Answer

By linearity in or Laplace expansion along the first column, the determinant is equal to $$ \begin{vmatrix} -1&1&\cdots & 1 \\ -a_1&a_2&\cdots &a_n\\ -a_1^{2}&a_2^{2}&\cdots&a_n^{2}\\ \vdots&\vdots&\ddots& \vdots\\ -a_1^{n-1}&a_2^{n-1}&\cdots&a_n^{n-1}\\ \end{vmatrix} + 2\begin{vmatrix} a_2&\cdots &a_n\\ a_2^{2}&\cdots&a_n^{2}\\ \vdots&\ddots& \vdots\\ a_2^{n-1}&\cdots&a_n^{n-1}\\ \end{vmatrix}. $$ Now each of the two summands is a multiple of a Vandermonde determinant.

Related Question