[Math] Find the area inside the circle $r = 10 \sin \theta$ and above the line $r = 2 \csc \theta$.

areacalculusintegrationpolar coordinatestrigonometry

Function Plotter graph:


enter image description here


I think the formula is

$$A = \frac 1 2 \int_{\alpha}^{\beta} (\text{outer})^2 – (\text{inner})^2 d\theta$$

where $\alpha, \beta$ are where they intersect in $[0, 2\pi]$.

This is what I got based on that

$$A = \frac 1 2 \int_{x}^{\pi-x} (10 \sin \theta)^2 – (2 \csc \theta)^2 d\theta$$

where $x= \sin^{-1}(\frac {1}{\sqrt{5}} )$

Is that right?

Best Answer

We can do this all with classical geometry.

The region in question is a circle or radius 5 less a section of a circle with angle $2\cos^{-1} \frac 35$ plus 2 $3-4-5$ right triangles.

$25\pi - 25\cos^{-1} \frac 35 + 12$

Lets see if calculus gives us the same answer.

limits of integration.

$2\csc \theta = 10\sin \theta\\ \frac 15 = \sin^2 \theta\\ \sin\theta = \pm \frac 1{\sqrt 5}$

$\frac 12\int_{\sin^{-1} \frac 1{\sqrt 5}}^{\pi - \sin^{-1} \frac 1{\sqrt 5}} (10\sin\theta)^2 - (2\csc\theta )^2\ d\theta\\ \frac 12\int_{\sin^{-1} \frac 1{\sqrt 5}}^{\pi - \sin^{-1} \frac 1{\sqrt 5}} 50(1-\cos2\theta) - 4\csc^2\theta\ d\theta\\ 25 (\theta -\sin\theta\cos\theta) + 2\cot\theta |_{\sin^{-1} \frac 1{\sqrt 5}}^{\pi - \sin^{-1} \frac 1{\sqrt 5}}\\ 25 \pi -50\sin^{-1}\frac {1}{\sqrt 5} +20 - 8 $

Does $25 \cos^{-1} \frac 35 = 50 \sin^{-1} \frac 1{\sqrt5}?$

Indeed it does!

Set up in Cartesian

inside:

$x^2 + y^2 = 10 y$

above $y = 2$

$\int_2^{10} \sqrt {10y - y^2} dy$