[Math] Find radius of convergence of power series

complex numberspower series

Since we know that

given $\sum_{n=0}^{\infty }C_nz^n$, if $\lim_{n\rightarrow \infty }|C_n|^{1/n}$ exists then $R^{-1}=\lim_{n\rightarrow \infty }|C_n|^{1/n}$ where $R$ is the radius of convergence.

But for the power series $\sum_{n=0}^{\infty }2^nz^{n^2}$, when I find the radius of convergence of it, should I find

$\lim_{n\rightarrow \infty }|C_n|^{1/n^2}$? Then $\lim_{n\rightarrow \infty }|C_n|^{1/n^2}=\lim_{n\rightarrow \infty }|2^n|^{1/n^2}$ which is $1$. So the convergence radius is $1$.

Am I correct? If no, how to find the convergence radius of the power series that is not in the form of $\sum_{n=0}^{\infty }C_nz^n$, but like $\sum_{n=0}^{\infty }C_nz^{n^2}$ or $\sum_{n=0}^{\infty }C_nz^{n!}$?

Thanks in advance!

Best Answer

The Ratio Test works too: \begin{align*} \lim_{n\rightarrow\infty}\left|\frac{2^{n+1}z^{(n+1)^2}}{2^nz^{n^2}}\right| &= 2\lim_{n\rightarrow\infty}|z|^{n^2+2n+1-n^2} \\ &= 2\lim_{n\rightarrow\infty}|z|^{2n+1} \\ &= \begin{cases} \infty & |z|>1 \\ 2 & |z|=1 \\ 0 & |z|<1 \end{cases} \end{align*} By the Ratio Test, $\displaystyle\sum_{n=0}^\infty 2^nz^{n^2}$ converges for $|z|<1$ and diverges for $|z|\geq 1$. In particular, $R=1$.