[Math] Find how many positive divisors a number has. What would you do

elementary-number-theory

Recently I learned an amazing thing. Suppose you are given a number and you have to find how many positive divisors it has. What would you do ?

Solution: Suppose you select $12$. It has $1,2,3,4,6,12$ as its divisors; so, total number of divisors of $12$ is $6$.

Now the method I learned:

$x={p_1}^a {p_2}^b$, where $p_1$ and $p_2$ are prime numbers. Now, $x$ has $(a+1)(b+1)$ positive divisors.

Note: Here $x$ can be expressed as a product of many primes with appropriate power.

I want to know the logic behind this.

Best Answer

This may give you more of the theory or logic that you want behind this (I give an explanation of your example specifically at the end), although Marco does provide a nice, intuitive combinatorial analysis.

As someone pointed out, $\sigma$ is the sum of divisors function, which is defined by setting $\sigma(n)$ equal to the sum of all the positive divisors of $n$.

Now, we have that $\tau$ is the number of divisors function, which is defined by setting $\tau(n)$ equal to the number of positive divisors of $n$.

First note that $\sigma(n)$ and $\tau(n)$ may be expressed in summation notation: $$ \sigma(n)=\sum_{d\mid n}d\quad\text{and}\quad \tau(n)=\sum_{d\mid n}1. $$ I am going to assume that you know $\sigma(n)$ and $\tau(n)$ are multiplicative functions (if not, proofs of this fact are easy to find); that is, $$ \sigma(mn)=\sigma(m)\sigma(n)\quad\text{and}\quad\tau(mn)=\tau(m)\tau(n),\tag{1} $$ where $m$ and $n$ are relatively prime positive integers (such functions are called completely multiplicative if $(1)$ holds for all positive integers $m$ and $n$).

With that out of the way, we can develop what you learned more rigorously by starting out with a lemma, then a theorem, and then a simple example.


Lemma: Let $p$ be prime and $a$ a positive integer. Then $$ \sigma(p^a)=1+p+p^2+\cdots+p^a=\frac{p^{a+1}-1}{p-1},\tag{2} $$ and $$ \tau(p^a)=a+1.\tag{3} $$ Proof. The divisors of $p^a$ are $1,p,p^2,\ldots,p^{a-1},p^a$. Hence, $p^a$ has exactly $a+1$ divisors, so that $\tau(p^a)=a+1$. Also, we note that $\sigma(p^a)=1+p+p^2+\cdots+p^{a-1}+p^{a}=\frac{p^{a+1}-1}{p-1}$ (the sum of terms in a geometric progression).

Theorem: Let the positive integer $n$ have prime factorization $n=p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s}$. Then we have that $$ \sigma(n)=\frac{p_1^{a_1+1}-1}{p_1-1}\cdot\frac{p_2^{a_2+1}-1}{p_2-1}\cdot\cdots\cdot\frac{p_s^{a_s+1}-1}{p_s-1}=\prod_{j=1}^s\frac{p_j^{a_j+1}-1}{p_j-1},\tag{4} $$ and $$ \tau(n)=(a_1+1)(a_2+1)\cdots(a_s+1)=\prod_{j=1}^s(a_j+1).\tag{5} $$ Proof. Since $\sigma$ and $\tau$ are both multiplicative, we can see that $$ \sigma(n)=\sigma(p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s})=\sigma(p_1^{a_1})\sigma(p_2^{a_2})\cdots\sigma(p_s^{a_s}), $$ and $$ \tau(n)=\tau(p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s})=\tau(p_1^{a_1})\tau(p_2^{a_2})\cdots\tau(p_s^{a_s}). $$ Inserting the values for $\sigma(p_i^{a_i})$ and $\tau(p_i^{a_i})$ found in $(2)$ and $(3)$, we obtain the desired formulas.

Example: Calculate $\sigma(200)$ and $\tau(200)$.

Solution. Using $(4)$ and $(5)$, we have that $$ \sigma(200)=\sigma(2^35^2)=\frac{2^4-1}{2-1}\cdot\frac{5^3-1}{5-1}=15\cdot 31=465, $$ and $$ \tau(200)=\tau(2^35^2)=(3+1)(2+1)=12. $$


For your observation specifically, calculating $\sigma(12)$ and $\tau(12)$ yields the following:

  • $\displaystyle \sigma(12)=\sigma(2^23^1)=\frac{2^3-1}{2-1}\cdot\frac{3^2-1}{3-1}=7\cdot 4=28$.
  • $\tau(12)=\tau(2^23^1)=(2+1)(1+1)=3\cdot 2 = 6$.