[Math] find equations of an ellipsoid axes

analytic geometrygeometry

I have an ellipsoid with the center point at the Origin and the following equation:
$$\alpha_1 x^2+\alpha_2 y^2+\alpha_3 z^2+2\beta_1 zy+2\beta_2 xz+2\beta_3 xy=1$$
How can I find the equations of lines correspond to its three main axes?

Best Answer

I'd like to fill in Jack's remark that this is simply an eigenvector problem, though I won't do so from a variational perspective. Let's write the ellipse in bilinear form using matrices:

\begin{align} \mathbf{x}^T M \mathbf{x} &=\begin{pmatrix} x&y&z \end{pmatrix}\begin{pmatrix}\alpha_1&\beta_3&\beta_3\\ \beta_{2}&\alpha_2 & \beta_1\\ \beta_2 &\beta_1 & \alpha_3\end{pmatrix}\begin{pmatrix}{x\\y\\z}\end{pmatrix}\\\\ &=\alpha_1 x^2+\alpha_2 y^2+\alpha_3 z^2+2\beta_1 zy+2\beta_2 xz+2\beta_3 xy=1 \end{align}

Suppose the matrix $M$ has full rank i.e. three orthonormal eigenvectors $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$ with eigenvalues $\lambda_1,\lambda_2,\lambda_3$ respectively. Then $M$ may be diagonalized using the matrix $S=(\mathbf{v}_1\,\mathbf{v}_2\,\mathbf{v}_3)$ as

\begin{align} S^TMS &=\begin{pmatrix}\mathbf{v}_1^T\\\mathbf{v}_2^T\\\mathbf{v}_3^T\end{pmatrix} \begin{pmatrix}M \mathbf{v}_1&M\mathbf{v}_2&M \mathbf{v}_3\end{pmatrix}\\ &=\begin{pmatrix}\mathbf{v}_1^T\\\mathbf{v}_2^T\\\mathbf{v}_3^T\end{pmatrix} \begin{pmatrix}\lambda_1 \mathbf{v}_1&\lambda_2 \mathbf{v}_2 &\lambda_3 \mathbf{v}_3 \end{pmatrix}=\begin{pmatrix} \lambda_1&0&0\\0&\lambda_2&0\\0&0&\lambda_3\end{pmatrix} \end{align} where the last equality follows from orthonormality. Hence $S^T MS=D$ where $D$ is diagonal. But $S^T S=I$ (since $(S^T S)_{ij}=\mathbf{v}_i^T \mathbf{v}_j=\delta_{ij})$ by orthonormality), so we may write $M=S D S^T$ and therefore the ellipse becomes $$\mathbf{x}^T M \mathbf{x}=\mathbf{x}^T (S D S^T)\mathbf{x}=\mathbf{X}^T D \mathbf{X}=\lambda_1 X^2+\lambda_2 Y^2+\lambda_3 Z^2=1$$ where $\mathbf{X}=S^T \mathbf{x}=(\mathbf{v}^T_1 \mathbf{x},\mathbf{v}^T_2 \mathbf{x},\mathbf{v}^T_2 \mathbf{x})^T=(X,Y,Z)^T$.

In these coordinates, we just have an ellipsoid with principal $XYZ$-axes; in other words, its axes are lines whose tangent vectors are just the basis vectors $\hat{e}_X,\hat{e}_Y,\hat{e}_Z$. We can map this back to the original coordinates via $\mathbf{x}=S\mathbf{X}$. But $S\cdot (\hat{e}_X,\hat{e}_Y,\hat{e}_Z)=SI=S$, so the column vectors of $S$ are the images of the basis $XYZ$-vectors.

So we arrive at a cute conclusion: The tangent vectors of the principal axes of the ellipse are the eigenvectors of the coordinate matrix of the ellipse. Glancing at the $XYZ$-form of the ellipse, we conclude that we can also read off the length of these axes from the cooresponding eigenvalues. So the analytic-geometry problem of describing the ellipse is indeed equivalent to an eigenvalue-eigenvector problem in linear algebra.