[Math] Find density functions of $Z=X+Y$ when the joint density function is known.

probabilityprobability distributions

Find the density function of $Z=X+Y$, $X$, $Y$ where the joint density function of $(X,Y)$ is given by $f(x,y) = \frac{1}{2} (x+y) e^{-(x+y)},\, x,y \geq 0$.

My initial idea is to calculate the distribution function of $Z$ like this:

$P(Z < z) = P(X+Y < z) = P(X < z-Y)$

$F_{z} = \frac{1}{2}\int\limits^{z}_{0}\int\limits^{z-y}_{0} (x+y) e^{-(x+y)} dx\, dy$

and then calculate its derivative $F_{z}^{'}$

Is this the way to go ?

Best Answer

Joint density is $f(x,y) = \frac{1}{2} (x+y) e^{-(x+y)},\, x,y \geq 0$ and the distribution function is

$F_Z(z) = P(Z < z) = P (X+Y < z) = P ( X < z, Y < z - X)$

then we have for the density of Z

\begin{array}[rl]{l} f_{Z}(z) &= \frac{\partial}{\partial z} F_z(z) = \frac{\partial}{\partial z} \int\limits_{0}^{z}\int\limits_{0}^{z-x} f(x,y)\,dy\,dx \\ &= \frac{\partial}{\partial z} F_z(z) = \int\limits_{0}^{z}\frac{\partial}{\partial z} \int\limits_{0}^{x-z} f(x,y)\,dy\,dx \\ &= \int\limits_{0}^{z} f(x,z-x)\cdot 1 - f(x,0)\cdot 0 \,dx \\ &= \frac{1}{2} \int\limits_{0}^{z} z\, e^{-z}\, dx \\ &= \frac{1}{2} z\cdot e^{-z} \int\limits_{0}^{z} \, dx \\ f_{Z}(z) &= \frac{1}{2} z^2\,e^{-z} \\ \end{array}

Related Question