[Math] Find annulus of convergence of Laurent series

complex-analysispower series

Find annulus of convergence of Laurent series

$\sum_{-\infty}^{\infty}2^{-n^2}(z-i)^{n^3}$

My answer: $0<|z-i|<\infty$

$\sum_{-\infty}^{\infty}2^{-n^2}(z-i)^{n^2}$

My answer: $|z-i|<\infty$

$\large\sum_{-\infty}^{\infty}\frac{1}{2^{|n|}} z^n$

My answer: $\frac{1}{2}<|z|<2$

$\large\sum_{-\infty}^{\infty}\frac{1}{n^2+1} z^{2n}$

My answer: $0<|z|<\infty$

Can anyone verify those?

Best Answer

Let's deal with the first two series.


In the first series, the general term is $$ \left|2^{-n^2}(z-i)^{n^3}\right|=2^{-n^2+n^3\log_2|z-i|} $$ As $n\to+\infty$ the size of the terms tends to $\infty$ if $|z-i|\gt1$.

As $n\to-\infty$ the size of the terms tends to $\infty$ if $|z-i|\lt1$.

This leaves $|z-i|=1$, for which, the series converges absolutely.


In the second series, the general term is $$ \left|2^{-n^2}(z-i)^{n^2}\right|=2^{-n^2+n^2\log_2|z-i|} $$ As $|n|\to\infty$, the size of the terms tends to $\infty$ if $|z-i|\gt2$.

The size of the terms is $1$ if $|z-i|=2$.

If $|z-i|\lt2$, the series converges absolutely.

Related Question