Geometry – Find Angle UFO in the Picture

euclidean-geometrygeometryplane-geometrytrianglestrigonometry

I sent this problem to Presh Talwalkar who suggested me to send it to this site.
I tried many things but was not able to find the correct solution.

  1. I made various segments trying to get an equilateral triangle similar to the Russian triangle problem, but no success.

  2. I also tried to flip the triangle UFO over side NO but again no success.

  3. I tried to find like triangles, but not enough.
    Could you please give me a hint?

Thanks,
R. de Souza

Find UFO

Best Answer

Consider a regular 36-gon $A_1A_2\ldots A_{36}$ inscribed in a circle of radius $R$. Inscribed angle over any side is $5^\circ$. We can see our configuration as it is shown on the picture. enter image description here

It suffices to prove that $UF$ is parallel to the diagonal $A_{13}A_{34}=EA_{34}$; then we have $\angle NFU=\angle NEA_{34}=25^\circ$, so $\angle UFO= \angle NFO-\angle NFU=100^\circ-25^\circ=75^\circ$.

To prove $UF\parallel A_{34}E$, it is enough to prove $\frac{NU}{UT}=\frac{NF}{FE}$ ($T$ is as on the picture). For we can use the following two formulae:

  1. The length of a chord of a circle with inscribed angle $\alpha$ is $2R\sin\alpha$.

  2. If $E$ is on a side $BC$ of a $\triangle ABC$, then $\frac{BE}{EC}= \frac{AB\sin\angle BAE}{AC\sin\angle CAE}$.

Now, from $\triangle OEN$ we have: $$\frac{NF}{FE}= \frac{ON\sin\angle NOF}{OE\sin\angle EOF}=\frac{2R\sin 40^\circ\sin 20^\circ}{2R\sin 60^\circ\sin 60^\circ}.$$ From $\triangle NET$ we have: $$\frac{NU}{UT}= \frac{EN\sin\angle NEU}{ET\sin\angle TEU}= \frac{2R\sin 80^\circ\sin 5^\circ}{ET\sin 20^\circ}.$$ By the law of sines on $\triangle NET$, $\frac{ET}{NE}=\frac{\sin 60^\circ}{\sin 95^\circ}$, so $ET= NE\ \frac{\sin 60^\circ}{\sin 95^\circ}= 2R\sin 80^\circ\frac{\sin 60^\circ}{\sin 95^\circ}$ and thus $$\frac{NU}{UT}= \frac{2R\sin 80^\circ\sin 5^\circ}{2R\sin 80^\circ\frac{\sin 60^\circ}{\sin 95^\circ}\sin 20^\circ}= \frac{2R\sin 95^\circ\sin 5^\circ}{2R\sin 60^\circ\sin 20^\circ}.$$

So, for $\frac{NU}{UT}=\frac{NF}{FE}$ it is enough to check: $\sin 40^\circ\sin 20^\circ\sin 20^\circ= \sin 95^\circ\sin 5^\circ\sin 60^\circ$.

We have: $$\sin 95^\circ\sin 5^\circ\sin 60^\circ=\frac{1}{2}(\cos 90^\circ-\cos 100^\circ)\sin 60^\circ= \frac{1}{2}\cos 80^\circ\sin 60^\circ= \frac{1}{4}(\sin 140^\circ-\sin 20^\circ)= \frac{1}{4}(\sin 40^\circ-\sin 20^\circ),$$ and: $$\sin 40^\circ\sin 20^\circ\sin 20^\circ=\frac{1}{2}(\cos 20^\circ-\cos 60^\circ)\sin 20^\circ= \frac{1}{2}(\cos 20^\circ\sin 20^\circ-\frac{1}{2}\sin 20^\circ)= \frac{1}{2}(\frac{1}{2}\sin 40^\circ-\frac{1}{2}\sin 20^\circ)= \frac{1}{4}(\sin 40^\circ-\sin 20^\circ).$$