[Math] Find an integer having the remainders $2,3,4,5$ when divided by $3,4,5,6$, respectively.

congruence-relationsmodular arithmeticnumber theory

Find an integer having the remainders $2,3,4,5$ when divided by $3,4,5,6$, respectively.

My work:

We consider the congruences $x \equiv 2 \pmod 3$, $x \equiv 3 \pmod 4$, $x \equiv 4 \pmod 5$, $x \equiv 5 \pmod 6$. We can reduce this further to $x \equiv 2 \pmod 3$, $x \equiv 3 \pmod 4$, $x \equiv 4 \pmod 5$. We have

$N_1 = 4 \cdot 5 = 20 \implies 20 x_1 \equiv 1 \pmod{3} \implies 2x_1 \equiv 1 \pmod{3} \implies x_1 \equiv 2 \pmod {3}$

$N_2 = 3 \cdot 5 = 15 \implies 15x_2 \equiv 1 \pmod{4} \implies -x_2 \equiv 1 \pmod{4} \implies x_2 \equiv 3 \pmod {4}$

$N_3 = 3 \cdot 4 = 12 \implies 12 x_3 \equiv 1 \pmod{5} \implies 2x_3 \equiv 1 \pmod{5} \implies x_3 \equiv 3 \pmod {5}$

Now,
\begin{align*}
\bar x &= a_1 N_1 x_1 + a_2 N_2 x_2 + a_3 N_3 x_3 \\
&= 3 \cdot 20 \cdot 2 + 4 \cdot 15 \cdot 3 + 5 \cdot 12 \cdot 3 \\
&= 480 \equiv 0 \pmod {3 \cdot 4 \cdot 5}
\end{align*}

Is this correct, or is something wrong in my work? I don't like how I have $0$ remainder.

Best Answer

It follows from the hypothesis that $3,4,5,6$ divides $(x+1) $ and therefore $x+1$ is a common multiple of these 4 numbers.

Related Question