[Math] Find a basis for the orthogonal complement of the column space of the following matrix

linear algebra

I was assigned this problem for homework but don't know if I'm tackling it properly..

Find a basis for the orthogonal complement of the column
space of the following matrix

$
M=
\begin{bmatrix}
1 & 1 \\
1 & -1 \\
1 & 1 \\
1 & -1 \\
\end{bmatrix}
$

I'm guessing I need to find $\vec{x}$ such that $M^T\vec{x}=\vec{0}$.

I have $M^T$ in rref which turns out to be
$M^T= \begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\end{bmatrix}$

I am confused as to where to go from here. Are the 3rd and 4th columns free variables?

Best Answer

$$M^Tx=0 \\ \iff \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ \end{bmatrix}\begin{bmatrix}x_1 \\ x_2 \\ x_3 \\ x_4\end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix} \\ \iff \begin{cases}x_1 + x_3 = 0 \\ x_2 + x_4 = 0\end{cases}$$

Let $x_3=s$ and $x_4=t$ where $s,t\in\Bbb R$, then $$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4\end{bmatrix} = \begin{bmatrix}-s \\ -t \\ s \\ t\end{bmatrix} = s\begin{bmatrix}-1 \\ 0 \\ 1 \\ 0\end{bmatrix} + t\begin{bmatrix}0 \\ -1 \\ 0 \\ 1\end{bmatrix}$$

Thus $\left\{\begin{bmatrix}-1 \\ 0 \\ 1 \\ 0\end{bmatrix}, \begin{bmatrix}0 \\ -1 \\ 0 \\ 1\end{bmatrix}\right\}$ is a basis for the orthogonal complement of the column space of $M$.