[Math] Faithfulness – Group Action on Left Cosets by Left Multiplication

group-actionsgroup-theoryproof-verification

p. 6: http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/gpaction.pdf
enter image description here

Pretend the blue set was not given and I have to calculate it myself:
For all $x \in G, f(x) = xgH$ is faithful $\iff \color{blue}{\text{some set which I must find}} = \color{green}{\{id\}} $.

The PDF unfolds the answer: Because $ {g_2}^{-1}g_1 \in \color{blue}{\bigcap_{g \in G} gHg^{-1}} $, hence $ \color{blue}{\bigcap_{g \in G} gHg^{-1}} = \color{green}{\{id\}} $.

I tried: To determine the values of $ x $ for which $ f(x) = xgH$ is faithful, I solve $ g_1 * x = g_2 * x $. Here I let * represent the group binary operation.

$ g_1 * x = g_2 * x :\iff g_1(gH) = g_2(gH) \text{ for all } g \in G \iff g_2^{-1}g_1 \in \color{red}{gH}$.
The last $\iff$ is by dint of the result: ${ aH = bH \iff b^{-1}a \in H} $.

What did I bungle? I missed $\color{red}{\bigcap_{g \in G}}$ and $g^{-1}$?

Best Answer

It really doesn’t make sense to talk about the values of $x$ for which the action is faithful: faithfulness is a property of the action as a whole. I can’t make any sense of $$\implies g_2^{-1}g_1\;:$$ $g_2^{-1}g_1$ isn’t something that can be implies. It’s an element of the group $G$, not a statement.

Suppose that $\bigcap_{g\in G}gHg^{-1}=\{1_G\}$. In order to show that the action is faithful, you must show that if $g_1,g_2\in G$, and $g_1gH=g_2gH$ for all $g\in G$, then $g_1=g_2$. Now

$$\begin{align*} g_1gH=g_2gH\quad&\text{ iff }\quad g^{-1}g_2^{-1}g_1g\in H\\ &\text{ iff }\quad g_2^{-1}g_1\in gHg^{-1}\;, \end{align*}\tag{1}$$

so if $g_1gH=g_2gH$ for all $g\in G$, we must have

$$g_2^{-1}g_1\in\bigcap_{g\in G}gHg^{-1}\;.$$

If $\bigcap_{g\in G}gHg^{-1}=\{1_G\}$, this implies that $g_2^{-1}g_1=1_G$ and hence that $g_1=g_2$, as desired.

Conversely, suppose that $\bigcap_{g\in G}gHg^{-1}\ne\{1_G\}$, and fix $g_1\in\bigcap_{g\in G}gHg^{-1}$ with $g_1\ne 1_G$. Let $g_2=1_G$; you can reverse the calculations above to show that $g_1gH=g_2gH$ for all $g\in G$ and hence that the action is not faithful: $g_1$ and $1_G$ act identically on $G/H$.