[Math] Express a complex number in modulus amplitude form

complex numbers

Express a complex number in modulus amplitude form

$\displaystyle 1+\sin \alpha +i\cos \alpha $

My Attempt:

$\displaystyle r\cos \theta= 1+\sin \alpha $

$\displaystyle r\sin \theta= \cos \alpha $

Squaring and adding.. $\displaystyle r^2= (1+\sin \alpha)^2+ \cos^2 \alpha$

$\displaystyle r^2= 2(1+\sin \alpha) $

$\displaystyle \tan \theta = \frac{\cos \alpha}{1+\sin \alpha} $

How to break up $\displaystyle 1+\sin \alpha $?

Best Answer

It is better to solve it this way:

$$\begin{aligned} 1+\sin\alpha+i\cos \alpha &=1+\cos\left(\frac{\pi}{2}-\alpha\right)+i\sin\left(\frac{\pi}{2}-\alpha\right)\\ & \stackrel{*}{=}2\cos^2\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)+i2\sin\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)\cos\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)\\ &=2\cos\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)\left(\cos\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)+i\sin\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)\right)\\ &=2\cos\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)e^{i\left(\pi/4-\alpha/2\right)}\\ \end{aligned}$$

$(*)$, In this step I used the following formulas:

$\cos(2x)=2\cos^2x-1$ and $\sin(2x)=2\sin x\cos x$


In your method, I am not seeing how you get that expression for $\tan\theta$. Rather it should be $\tan\theta=\dfrac{\cos\alpha}{1+\sin\alpha}$. Hence,

$$\tan\theta=\frac{\sin\left(\frac{\pi}{2}-\alpha\right)}{1+\cos\left(\frac{\pi}{2}-\alpha\right)}=\frac{2\sin\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)\cos\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)}{2\cos^2\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)}$$ $$\Rightarrow \tan\theta=\tan\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)$$

Related Question