[Math] example of compact operator

functional-analysis

Let $E=l^p=\left\{x=\left(x_n\right): x_n\in\mathbb{R}, \sum_{1}^{\infty}\left|x_n\right|^p<\infty\right\}$ with $1\le p<\infty$, $\left\|x\right\|_E=\left(\sum_{1}^{\infty}\left|x_n\right|^p\right)^{1/p}.$ Let $\left(\lambda_n\right)$ is a bounded sequence in $\mathbb{R}$ and consider the operator $T$ defined by
$$T(x)=\left(\lambda_1x_x,\ldots,\lambda_nx_n,\ldots\right)$$
where $x\in l^p$.
Prove that $T$ is a compact operator from $E$ to $E$ iff $\lambda_n\rightarrow 0$.

Can anyone give me some hints to solve this problem? Thank you!

Best Answer

Hint for $\implies$: If $\lambda_n \not \to 0,$ then for some $\epsilon>0,|\lambda_{n_k}| > \epsilon$ along a subsequence $n_k.$ Letting $e_n$ denote the usual "basis" vector, consider the sequence $e_{n_k}$ in the unit ball of $l^p$ and its images under $T.$

Related Question