[Math] Evaluation of the principal value of $\int\limits_{-\infty}^\infty \frac{\sin 2x}{x^3} \, dx$

cauchy-integral-formulacauchy-principal-valuecomplex-analysiscontour-integrationresidue-calculus

I'm trying to evaluate an integral $\int\limits_{-\infty}^\infty \frac{\sin 2x}{x^3}\,dx$ using Cauchy's theorem. Considering an integral from $-R$ to $-\epsilon$, then a semicircular indentation around $x=0$, then $\epsilon$ to $R$, then a semicircular contour from $R$ to $-R$. Around the pole at $x=0$, the semicircular contribution gives $$\int\limits_\pi^0 \, dz\frac{e^{2iz}}{z^3}=\int_\pi^0 (\epsilon e^{i\theta})(i \, d\theta) \frac{e^{\epsilon e^{i\theta}}}{(\epsilon e^{i\theta})^3}$$ What I need is the limiting value of this integral as $\epsilon\rightarrow 0$. But it seems to diverge.

Best Answer

We have that $\;z=0\;$ is clearly a triple pole of

$$f(z):=\frac{e^{i2z}}{z^3} ,\;\;\text{and in this case it is probable easier to use power series for the residue:}$$

$$\frac{e^{2iz}}{z^3}=\frac1{z^3}\left(1+2iz-\frac{4z^2}{2!}-\ldots\right)=\frac1{z^3}+\frac{2i}{z^2}-\frac2z-\ldots\implies\text{Res}_{z=0}(f)=-2$$

so taking the usual contour with a "bump" around zero, we get

$$0=\lim_{R\to\infty,\,\epsilon\to0}\oint_{\Gamma_R}f(z)=\int_{-\infty}^\infty\frac{e^{2ix}}{x^3}dx-\int_{\gamma_\epsilon}f(z)dz= \int_{-\infty}^\infty\frac{e^{2ix}}{x^3}dx+2\pi i\implies$$

$$-2\pi i=\int_{-\infty}^\infty\frac{e^{2ix}}{x^3}dx=\int_{-\infty}^\infty\frac{\cos2x+i\sin2x}{x^3}dx\implies \int_{-\infty}^\infty\frac{\sin2x}{x^3}dx=-2\pi$$

the last equality following from comparing real and imaginary parts in both sides. The above though is just CPV (Cauchy's Principal Value) of the integral, since it doesn't converge in the usual sense of the word.