Elliptic Integrals – Evaluating Complex Definite Integrals

definite integralselliptic integralsspecial functions

I have the following integral,

$$I(t)=\int_{-\pi}^\pi\frac{dx}{\sqrt{(t-2\cos x)^2-4}},$$

where $t>4$ is a real parameter. I know from messing around numerically and playing with Mathematica that

$$I(t)=\frac{4}{t}K\left(\frac{16}{t^2}\right),$$

where $K$ is the complete elliptic integral of the first kind with parameter $m=k^2=16/t^2$. However, I seek proof of that fact. I have tried a handful of changes of variables which didn't get the job done, and I've searched tables of integrals without finding this integrand or similar. Any suggestions or hints would be appreciated.

Best Answer

Here is a rather circuitous route. Maybe there is a more compact way to do this:

$$\require{cancel}\begin{align*} \int_{-\pi}^\pi \frac{\mathrm dx}{\sqrt{(t-2\cos x)^2-4}}&=2\int_0^\pi \frac{\mathrm dx}{\sqrt{(t-2\cos x)^2-4}}\\ &=4\int_0^\infty \frac{\mathrm du}{\sqrt{((t+4)u^2+t)(tu^2+t-4)}} \qquad \small{\left(u=\tan\frac{x}{2}\right)}\\ &=\frac4{\sqrt{t(t+4)}}\int_0^\infty \frac{\mathrm du}{\sqrt{\left(u^2+\frac{t}{t+4}\right)\left(u^2+\frac{t-4}{t}\right)}}\\ &=\frac{4\cancel{\sqrt{t(t+4)}}}{\cancel{\sqrt{t(t+4)}}}\int_0^{\pi/2} \frac{\mathrm dv}{\sqrt{t^2-16+16\sin^2 v}} \quad \small{\left(u=\sqrt{\frac{t}{t+4}}\tan\,v\right)}\\ &=4\int_0^{\pi/2} \frac{\mathrm dv}{\sqrt{t^2-16+16\sin^2 v}}\\ &=4\int_{-\pi/2}^0 \frac{\mathrm dv}{\sqrt{t^2-16+16\sin^2 v}}\qquad\text{(symmetry)}\\ &=4\int_0^{\pi/2} \frac{\mathrm dv}{\sqrt{t^2-16+16\cos^2 v}}=4\int_0^{\pi/2} \frac{\mathrm dv}{\sqrt{t^2-16\sin^2 v}}\\ &=\frac4{t}K\left(\frac{16}{t^2}\right) \end{align*}$$

Related Question