[Math] Evaluating $\sum^{\infty}_{k=1}\frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$

sequences-and-series

Finding sum of series $$\displaystyle \sum^{\infty}_{k=1}\frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$

Try: Let $$S = \displaystyle \sum^{\infty}_{k=1}\frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$

So, $$S =\sum^{\infty}_{k=1}\frac{k^2\cdot (2k-2)!}{(2k+2)!}=\frac1{3!}\sum^{\infty}_{k=0}\frac{(k+1)^2\cdot(2k)!\cdot 3!}{(2k+3+1)!}$$

with the help of identity $$B(m,n) = \int^{1}_{0}x^m(1-x)^ndx = \frac{\Gamma (m+1)\Gamma(n+1)}{\Gamma(m+n+2)}$$

$$B(m,n) = \frac{\Gamma (m+1)\Gamma(n+1)}{\Gamma(m+n+2)}=\frac{m!\cdot n!}{(m+n+1)!}$$

So $$S=\sum^{\infty}_{k=0}(k+1)^2\int^{1}_{0}(x)^{2k}(1-x)^3dx$$

$$S=\int^{1}_{0}x^{-2}(1-x)^3\sum^{\infty}_{k=1}(kx^k)^2dx$$

Can someone explain me how to calculate $\displaystyle \sum^{\infty}_{k=1}k^2x^{2k}$ in some short way . although I am trying to solve it but it is too lengthy.

Please explain to me ,thanks.

Best Answer

Good so far, to finish the proof notice that,

$$\frac{1}{1-z} = \sum_{i=0}^{\infty} z^i $$

Differentiating,

$$\frac{1}{(1-z)^2} = \sum_{i=1}^{\infty} i z^{i-1}$$

Multiply by $z$ then differentiate again,

$$z\frac{d}{dz} \frac{z}{(1-z)^2} = \sum_{i=1}^\infty i^2 z^{i} $$

So we have that,

$$\frac{z(z+1)}{(1-z)^3} = \sum_{k=1}^\infty k^2 z^k $$

Put in $z = x^2$ to obtain,

$$\sum_{k=1}^\infty k^2x^{2k} = \frac{x^2(x^2+1)}{(1-x^2)^3}$$

The most brute force way to calculate the integral after that is to substitute in $x = \sin \theta$, expand everything and separate and calculate all the integrals separately.