Calculus – Evaluating Improper Integral of Sin(x)/(x^2+1)

calculusimproper-integralsintegration

I have seen $$\int_0^\infty \frac{\cos(x)}{x^2+1} \, dx=\frac{\pi}{2e}$$ evaluated in various ways.

It's rather popular when studying CA.

But, what about $$\int_0^\infty \frac{\sin(x)}{x^2+1} \, dx\,\,?$$

This appears to be trickier and more challenging.

I found that it has a closed form of
$$\cosh(1)\operatorname{Shi}(1)-\sinh(1)\text{Chi(1)}\,\,,\,\operatorname{Shi}(1)=\int_0^1 \frac{\sinh(x)}{x}dx\,\,,\,\, \text{Chi(1)}=\gamma+\int_0^1 \frac{\cosh(x)-1}{x} \, dx$$

which are the hyperbolic sine and cosine integrals, respectively.

It's an odd function, so
$$\int_{-\infty}^\infty \frac{\sin(x)}{x^2+1} \, dx=0$$

But, does anyone know how the former case can be done? Thanks a bunch.

Best Answer

Mellin transform of sine is, for $-1<\Re(s)<1$: $$ G_1(s) = \mathcal{M}_s(\sin(x)) = \int_0^\infty x^{s-1}\sin(x) \mathrm{d} x =\Im \int_0^\infty x^{s-1}\mathrm{e}^{i x} \mathrm{d} x = \Im \left( i^s\int_0^\infty x^{s-1}\mathrm{e}^{-x} \mathrm{d} x \right)= \Gamma(s) \sin\left(\frac{\pi s}{2}\right) = 2^{s-1} \frac{\Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(1-\frac{s}{2}\right)} \sqrt{\pi} $$ And Mellin transfom of $(1+x^2)^{-1}$ is, for $0<\Re(s)<2$: $$ G_2(s) = \mathcal{M}_s\left(\frac{1}{1+x^2}\right) = \int_0^\infty \frac{x^{s-1}}{1+x^2}\mathrm{d} x \stackrel{x^2=u/(1-u)}{=} \frac{1}{2} \int_0^1 u^{s/2-1} (1-u)^{-s/2} \mathrm{d}u = \frac{1}{2} \operatorname{B}\left(\frac{s}{2},1-\frac{s}{2}\right) = \frac{1}{2} \Gamma\left(\frac{s}{2}\right) \Gamma\left(1-\frac{s}{2}\right) = \frac{\pi}{2} \frac{1}{\sin\left(\pi s/2\right)} $$ Now to the original integral, for $0<\gamma<1$: $$ \int_0^\infty \frac{\sin(x)}{1+x^2}\mathrm{d}x = \int_{\gamma-i \infty}^{\gamma+ i\infty} \mathrm{d} s\int_0^\infty \sin(x) \left( \frac{G_2(s)}{2 \pi i} x^{-s}\right) \mathrm{d}s = \frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} G_2(s) G_1(1-s) \mathrm{d}s =\\ \frac{1}{4 i} \int_{\gamma-i \infty}^{\gamma+i \infty} \Gamma(1-s) \cot\left(\frac{\pi s}{2}\right) \mathrm{d} s = \frac{2\pi i}{4 i} \sum_{n=1}^\infty \operatorname{Res}_{s=2n} \Gamma(1-s) \cot\left(\frac{\pi s}{2}\right) = \sum_{n=1}^\infty \frac{\psi(2n)}{\Gamma(2n)} = \sum_{n=1}^\infty \frac{1+(-1)^n}{2} \frac{\psi(n)}{\Gamma(n)} $$ Since $$ \sum_{n=1}^\infty z^n \frac{\psi(n)}{\Gamma(n)} = \mathrm{e}^z z \left(\Gamma(0,z) + \log(z)\right) $$ Combining: $$ \int_0^\infty \frac{\sin(x)}{1+x^2} \mathrm{d}x = \frac{\mathrm{e}}{2} \Gamma(0,1) - \frac{1}{2 \mathrm{e}} \Gamma(0,-1) - \frac{i \pi }{2 \mathrm{e}} = \frac{1}{2e} \operatorname{Ei}(1) - \frac{\mathrm{e}}{2} \operatorname{Ei}(-1) $$

Related Question