Calculus – Evaluating $\int_0^{\frac\pi2}\frac{\ln{(\sin x)}\ \ln{(\cos x})}{\tan x}\ dx$

calculusclosed-formdefinite integralsimproper-integralsintegration

I need to solve
$$
\int_0^{\Large\frac\pi2}\frac{\ln{(\sin x)}\ \ln{(\cos x})}{\tan x}\ dx
$$

I tried to use symmetric properties of the trigonometric functions as is commonly used to compute
$$
\int_0^{\Large\frac\pi2}\ln\sin x\ dx = -\frac{\pi}{2}\ln2
$$
but never succeeded. (see this for example)

Best Answer

Let's start out with the substitution $ \displaystyle \ln(\sin x) = u $ and get: $$\ln(\cos x)=\frac{\ln(1-e^{2u})}{2}$$ $$\displaystyle\frac{1}{\tan x} \ dx =du$$ that further yields $$\int_0^{\pi/2}\frac{(\ln{\sin x})(\ln{\cos x})}{\tan x}dx= \frac{1}{2} \int_{-\infty}^{0} \ln(1-e^{2u}) u \ du$$

According to Taylor expansion we have $$\ln(1-e^{2u})= \sum_{k=1}^{\infty} (-1)^{2k+1} \frac{e^{2 k u}}{k}$$ then $$\frac{1}{2} \int_{-\infty}^{0} \ln(1-e^{2u}) u \ du=$$ $$\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{2k+1}}{k} \int_{-\infty}^{0} u e^{2ku} \ du =$$ $$\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{2k+1}}{k} \frac{-1}{4k^2} = \frac{1}{8} \sum_{k=1}^{\infty} \frac{1}{k^3}=\frac{1}{8} \zeta(3).$$

Remark: the value of $\zeta(3)\approx1.2020569$ is called Apéry's Constant - see here.

Q.E.D. (Chris)

Related Question