[Math] Evaluating $\int_0^1 \frac{\arctan x \log x}{1+x}dx$

definite integralsharmonic-numbersintegration

In order to compute, in an elementary way,

$\displaystyle \int_0^1 \frac{x \arctan x \log \left( 1-x^2\right)}{1+x^2}dx$

(see Evaluating $\int_0^1 \frac{x \arctan x \log \left( 1-x^2\right)}{1+x^2}dx$)

i need to show, in a simple way, that:

$\displaystyle \int_0^1 \dfrac{\arctan x \log x}{1+x}dx=\dfrac{G\ln 2}{2}-\dfrac{\pi^3}{64}$

$G$ is the Catalan's constant.

Best Answer

I finally get a solution (i swear i didn't know it when i have posted the question)

Define for $x\in [0,1]$ the function $F$:

$\displaystyle F(x)=\int_0^x \dfrac{\ln t}{1+t}dt$

Notice that $F(1)=-\dfrac{\pi^2}{12}$

(use Taylor's development)

and, after performing the change of variable $y=\dfrac{t}{x}$,

$\displaystyle F(x)=\int_0^1 \dfrac{x\ln(xy)}{1+xy}dy$

Since that:

$\Big[F(x)\arctan x\Big]_0^1=-\dfrac{\pi^3}{48}$

then,

$\displaystyle -\dfrac{\pi^3}{48}=\int_0^1 \dfrac{F(x)}{1+x^2}dx+\int_0^1 \dfrac{\arctan x\ln x}{1+x}dx$

$\displaystyle\int_0^1 \dfrac{F(x)}{1+x^2}dx=\int_0^1\int_0^1 \dfrac{x\ln(xy)}{(1+xy)(1+x^2)}dxdy$

$\displaystyle\int_0^1 \dfrac{F(x)}{1+x^2}dx=\int_0^1\int_0^1 \dfrac{x\ln(x)}{(1+xy)(1+x^2)}dxdy+\int_0^1\int_0^1 \dfrac{x\ln(y)}{(1+xy)(1+x^2)}dxdy$

$\displaystyle\int_0^1 \dfrac{F(x)}{1+x^2}dx=\int_0^1\left[\dfrac{\ln x\ln(1+xy)}{1+x^2}\right]_{y=0}^{y=1} dx+ \displaystyle \int_0^1 \left[-\dfrac{\ln y\ln(1+xy)}{1+y^2}+\dfrac{\ln y\ln(1+x^2)}{2(1+y^2)}+\dfrac{y\ln y\arctan x}{1+y^2}\right]_{x=0}^{x=1}dy$

$\displaystyle\int_0^1 \dfrac{F(x)}{1+x^2}dx= \int_0^1 \dfrac{\ln x\ln(1+x)}{1+x^2}dx-\int_0^1\dfrac{\ln y\ln(1+y)}{1+y^2}dy+\dfrac{\ln 2}{2}\int_0^1 \dfrac{\ln y}{1+y^2}dy+ \dfrac{\pi}{4}\times \int_0^1 \dfrac{y\ln y}{1+y^2}dy$

Using Taylor's development,

$\displaystyle \int_0^1 \dfrac{y\ln y}{1+y^2}dy=-\dfrac{\pi^2}{48}$

And it's well known that, $\displaystyle -G=\int_0^1\dfrac{\ln y}{1+y^2}dy$

Therefore,

$\displaystyle\int_0^1 \dfrac{F(x)}{1+x^2}dx=-\dfrac{G\ln 2}{2}-\dfrac{\pi^3}{192}$

And finally,

$\displaystyle \int_0^1 \dfrac{\arctan x \ln x}{1+x}dx=\dfrac{G\ln 2}{2}-\dfrac{\pi^3}{64}$

(I hope there is no mistake, this proof is too wonderful to be true )

NB:

Added, July 2, 2019.

The above computation is the result of "reverse engineering". I was searching for a way to express $\pi^3$ as in integral. If you introduce the function, for $x\in [0;1]$, \begin{align}\displaystyle F(x)&=\int_0^x \dfrac{\ln t}{1+t}dt\\ &=\int_0^1 \dfrac{x\ln(tx)}{1+tx}dt \end{align} Observe that, \begin{align}\frac{\partial F(x)}{\partial x}&=\dfrac{\ln x}{1+x}\\ F(1)&=-\frac{\pi^2}{12} \end{align}

Then, \begin{align}-\frac{\pi^3}{48}&=\Big[F(x)\arctan x\Big]_0^1\\ \end{align} And, \begin{align}\frac{\partial F(x)}{\partial x}\arctan x=\frac{\arctan x\ln x}{1+x}\end{align}

Thus, one can apply integration by parts, \begin{align}\int_0^1 \frac{\arctan x\ln x}{1+x}\,dx&=\int_0^1 \frac{\partial F(x)}{\partial x}\arctan x\,dx\end{align} and so on,

Related Question