Calculus – Evaluating a Sum Involving Binomial Coefficient in Denominator

binomial-coefficientscalculusintegrationsequences-and-series

I came across the following sum:
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}\frac{4^k}{{2k \choose k}}$$


I thought that this can be evaluated using the expansion of $\dfrac{\sin^{-1}x}{\sqrt{1-x^2}}$ but I couldn't make any use of it. Then I tried to use the following:
$$\frac{1}{(2k+1)}\frac{1}{{2k \choose k}}=\frac{\Gamma(k+1)\Gamma(k+1)}{\Gamma(2k+2)}=\int_0^1 x^k(1-x)^k\,dx$$
but this didn't help either and now I am stuck.

Any help is greatly appreciated. Thanks!


EDIT:

The sum originated from the following definite integral:

$$\int_0^{\pi/2}\tan^{-1}(\sin x)\,dx$$

Best Answer

$$ \begin{align} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}\frac{4^k}{{2k \choose k}} &= \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2k+1} \int_{0}^{\pi /2} \sin^{2k+1} (x) \, dx \\ &= \int_{0}^{\pi /2} \sum_{n=0}^{\infty} \frac{(-1)^{k} \sin^{2k+1} (x)}{2k+1} \, dx\\ &= \int_{0}^{\pi /2} \arctan (\sin x) \, dx \\ &= \int_{0}^{1} \frac{\arctan t}{\sqrt{1-t^{2}}} \, dt \end{align}$$

Let $ \displaystyle I(a) = \int_{0}^{1} \frac{\arctan (at)}{\sqrt{1-t^{2}}} \ dt$.

Then differentiating under the integral sign,

$$ \begin{align} I'(a) &= \int_{0}^{1} \frac{t}{(1+a^{2}t^{2})\sqrt{1-t^{2}}} \, dt \\ &= \int_{0}^{1} \frac{1}{[1+a^{2}(1-u^{2})]u} \, u \, du \\ &= \frac{1}{1+a^{2}} \int_{0}^{1} \frac{1}{1-\left( \frac{au}{\sqrt{1+a^{2}}}\right)^{2}} \, du \\ &= \frac{1}{a \sqrt{1+a^{2}}} \text{arctanh} \left( \frac{a}{\sqrt{1+a^{2}}} \right) \\ &= \frac{1}{a\sqrt{1+a^{2}}} \frac{1}{2} \ln \Big((a+\sqrt{1+a^{2}})^{2} \Big) \\ &= \frac{1}{a \sqrt{1+a^{2}}} \ln \left( a+ \sqrt{1+a^{2}} \right) \\ &= \frac{1}{a \sqrt{1+a^{2}}} \text{arcsinh}(a) . \end{align}$$

And then integrating back,

$$ \begin{align} I(1)-I(0) = I(1) &= \int_{0}^{1} \frac{\text{arcsinh}(a)}{a \sqrt{1+a^{2}}} \, da \\ &= - \text{arcsinh}(a) \text{arcsinh}(\frac{1}{a}) \Bigg|^{1}_{0} + \int_{0}^{1} \frac{\text{arcsinh}(\frac{1}{a})}{\sqrt{1+a^{2}}} \, da \\ &= - \text{arcsinh}^{2}(1) + \int_{0}^{1} \frac{\text{arcsinh}(\frac{1}{a})}{\sqrt{1+a^{2}}} \, da \\ &= - \ln^{2}(1+\sqrt{2}) + \int_{0}^{1} \frac{\text{arcsinh}(\frac{1}{a})}{\sqrt{1+a^{2}}} \, da . \end{align}$$

Now let $ \displaystyle w = \frac{1}{a}$.

Then

$$ I(1) = - \ln^{2}(1+\sqrt{2}) + \int_{1}^{\infty} \frac{\text{arcsinh}(w)}{w \sqrt{1+w^{2}}} \, dw$$

$$ = - \ln^{2}(1+\sqrt{2}) + I(\infty) - I(1) .$$

Therefore,

$$ \begin{align} I(1) &= - \frac{\ln^{2}(1+\sqrt{2})}{2} + \frac{I(\infty)}{2} \\ &= - \frac{\ln^{2}(1+\sqrt{2})}{2} + \frac{\pi}{4} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} \, dt \\ &= - \frac{\ln^{2}(1+\sqrt{2})}{2} + \frac{\pi^{2}}{8} . \end{align}$$