Calculus – Evaluating Convergent Improper Triple Integral Over Unit Sphere

calculusimproper-integralsintegrationmultivariable-calculus

In Exercise 5 (f) of Angus Taylor's Advanced calculus (p. 659) one is asked to find the value of the following integral if convergent:

$$I:=\underset{R}{\iiint}\dfrac{x^2 y^2 z^2}{r^{17/2}}\mathrm dV$$

where $R$ is the unit sphere $x^2+y^2+z^2\leq 1$ and $r^2=x^2+y^2+z^2$.

Observing that $\dfrac{x^2 y^2 z^2}{r^{17/2}}\leq \dfrac{r^6}{r^{17/2}}=r^{-5/2}$ I proved that $I$ is convergent.

Using spherical co-ordinates $r$, $\theta $, $\phi $ i.e.

$$\begin{align*}x&=r\sin \phi \cos \theta\\y&=r\sin \phi \sin \theta\\z&=r\cos \theta\end{align*}$$

I transformed the integral $I$ into

$$I=\int\nolimits_0^{2\pi }\left(\int_0^{\pi }\left(\lim_{\delta \to 0}\int_{\delta }^1\left(r^2 \sin \phi\right)\dfrac{x^2 y^2 z^2}{r^{17/2}}\;\mathrm dr\right)\;\mathrm d\phi \right)\;\mathrm d\theta$$

$$=\lim_{\delta \to 0}\left( \int_{\delta }^1 r^{-1/2}\mathrm dr\right)\int_0^{2\pi }\cos^4 \theta \sin^2 \theta \mathrm d\theta\int_0^{\pi }\sin^5 \mathrm d\phi $$

$$=2\cdot \dfrac18 \pi \cdot \dfrac{16}{15}=\dfrac4{15}\pi $$

In the solutions the answer is $\dfrac8{105}\pi$. Since sometimes there
are a few book typos (in the exercises) to prevent undue copying, I ask the
following

Question: What is the correct solution, $\dfrac4{15}\pi $ or $\dfrac8{105}\pi $?


UPDATE (Correction): instead of $z=r\cos \theta $ it is

$z=r\cos \phi $

See a comment from whuber.

The integral $I$ is transformed into

$$I=\int_0^{2\pi }\left(\int_0^{\pi }\left(\lim_{\delta \to 0}\int_{\delta }^1\left(r^2 \sin \phi\right)\dfrac{x^2 y^2 z^2}{r^{17/2}}\;\mathrm dr\right)\;\mathrm d\phi \right)\;\mathrm d\theta$$

Since

$$(r^2 \sin \phi )\dfrac{x^2 y^2 z^2}{r^{17/2}}=(r^2\sin \phi )\dfrac1{r^{17/2}}\left( r\sin \phi \cos \theta \right)
^{2}\left( r\sin \phi \sin \theta \right) ^{2}\left( r\cos \phi \right) ^{2}$$

$=r^{-1/2}\cos ^{2}\theta \cdot\sin ^{2}\theta \cdot\cos ^{2}\phi \cdot\sin ^{5}\phi $,

the transformed integral becomes (if I am right):

$$I=\left(\lim_{\delta \to 0} \int_{\delta
}^1 r^{-1/2}\mathrm dr\right)\int_0^{2\pi }\cos^2\theta\cdot\sin^2\theta \;\mathrm d\theta
\int_0^{\pi }\cos^2 \phi \cdot\sin^5 \phi \;\mathrm d\phi$$

$$=2\cdot \dfrac14 \pi \cdot \dfrac{16}{105}=\dfrac8{105}\pi$$

The correct solution will be $\dfrac8{105}\pi $ as in the book.

Best Answer

For this answer, I'll use $\rho$ instead of $r$, I tend to confuse things when dealing with both cylindrical and spherical coordinates

Converting the original integrand into spherical coordinates gives

$$\frac{1}{16}\frac{(\sin(2\theta)\sin(2\phi)\sin(\phi))^2}{\rho^{5/2}}$$ which we multiply by the Jacobian $\rho^2 \sin(\phi)$ for the triple integration to give the final integrand $$\frac{1}{16}\frac{(\sin(2\theta)\sin(2\phi))^2\sin(\phi)^3}{\sqrt{\rho}}$$ As for setting up the limits of the integration, we can exploit symmetry and cut up the unit sphere into octants to simplify the mathematics, thus: $$8\int_{0}^{1}\int_{0}^{\pi/2}\int_{0}^{\pi/2}{\frac{1}{16}\frac{(\sin(2\theta)\sin(2\phi))^2\sin(\phi)^3}{\sqrt{\rho}}}\mathrm{d}\theta\mathrm{d}\phi\mathrm{d}\rho$$ and then bring out the constant term to give $$\frac12\int_{0}^{1}\int_{0}^{\pi/2}\int_{0}^{\pi/2}{\frac{(\sin(2\theta)\sin(2\phi))^2\sin(\phi)^3}{\sqrt{\rho}}}\mathrm{d}\theta\mathrm{d}\phi\mathrm{d}\rho$$ Let's separate things out: $$\frac12\int_{0}^{1}\frac{\mathrm{d}\rho}{\sqrt{\rho}}\int_{0}^{\pi/2}\sin(2\theta)^2 \mathrm{d}\theta\int_{0}^{\pi/2}{\sin(2\phi)^2\sin(\phi)^3}\mathrm{d}\phi$$ The integral with respect to $\rho$ is 2, which cancels out the multiplicative factor, so we're left with $$\int_{0}^{\pi/2}\sin(2\theta)^2 \mathrm{d}\theta\int_{0}^{\pi/2}{\sin(2\phi)^2\sin(\phi)^3}\mathrm{d}\phi$$ Evaluating the angular integrals gives: $$\left.\frac{\theta}{2}-\frac{\sin(4\theta)}{8}\right|_{\theta=0}^{\theta=\pi/2}=\frac{\pi}{4}$$ $$\left.-\frac{5\cos(\phi)}{16}-\frac{\cos(3\phi)}{48}+\frac{3\cos(5\phi)}{80}-\frac{\cos(7\phi)}{112}\right|_{\phi=0}^{\phi=\pi/2}=\frac{32}{105}$$ and we get the result $\frac{8\pi}{105}$.

Related Question