Integration – Evaluate ??¹ log(1-x+x²)log(1+x-x²)/x dx

definite integralsintegration

I was doing experiments with Wolfram Alpha online calculator, about similar integrals (simpler than the below one) and wondered about how get a closed-form for $$\int_0^1\frac{\log(1-x+x^2)\log(1+x-x^2)}{x}dx\tag{1}.$$

I've calculated the definite integral using the online calculator, but I believe that the output is an approximation, and since after of this, I've asked to Wolfram Alpha about the indefinite integral, I know that Wolfram Alpha can calculate it, but to me is impossible to evaluate the terms (are about two pages)

int log(1-x+x^2)log(1+x-x^2)/x dx

Question. Is there some way to evaluate this integral in $(1)$? This was just a curiosity, but I am asking here if you know such integral or do you know how get the evaluation of our integral. Thanks in advance.

Since Wolfram Alpha's answer seems to me difficult, I didn't any attempt (change or variable, integration by parts…).

Best Answer

It's

$$\int_0^1\frac{\log(1-x+x^2)\log(1+x-x^2)}{x}dx= -2\sum\limits_{k=1}^\infty \frac{(2k-1)!^2}{(4k)!}\sum\limits_{v=0}^{k-1}\frac{1}{k+v}$$

which is $\enspace\approx -0.0848704554500727311… $ .

Already $\enspace\displaystyle -2\sum\limits_{k=1}^{10} \frac{(2k-1)!^2}{(4k)!}\sum\limits_{v=0}^{k-1}\frac{1}{k+v}\enspace$ gives a good approach.

Note: A closed form for such or comparable series is not known to me.

Proof:

$\displaystyle \int_0^1\frac{\log(1-x+x^2)\log(1+x-x^2)}{x}dx=$

$\displaystyle =\int_0^1\lim\limits_{h\to 0}\frac{((1-x+x^2)^h-1)((1+x-x^2)^h-1)}{h^2x}dx$

$\displaystyle =\lim\limits_{h\to 0}\frac{1}{h^2}\int_0^1\frac{((1-x+x^2)^h-1)((1+x-x^2)^h-1)}{x}dx$

$\displaystyle =\lim\limits_{h\to 0}\frac{1}{h^2}\left(\int_0^1\left(\frac{(1-(x-x^2)^2)^h-1}{x}-\frac{(1-x+x^2)^h-1}{x}-\frac{(1-x+x^2)^h-1}{x}\right)dx\right) $

$\displaystyle =\lim\limits_{h\to 0}\frac{1}{h^2}\int_0^1\left(\sum\limits_{k=1}^\infty \binom h k \left(x^{k-1}(-x(1-x)^2)^k -x^{k-1}(-1+x)^k -x^{k-1}(1-x)^k\right) \right) $

$\displaystyle =\lim\limits_{h\to 0}\frac{1}{h^2}\sum\limits_{k=1}^\infty \binom h k \int_0^1\left(x^{k-1}(-x(1-x)^2)^k -x^{k-1}(-1+x)^k -x^{k-1}(1-x)^k\right)dx $

$\displaystyle =\lim\limits_{h\to 0}\frac{1}{h^2}\sum\limits_{k=1}^\infty \binom h k \left((-1)^k\frac{(2k-1)!(2k)!}{(4k)!} -(1+(-1)^k)\frac{(k-1)!k!}{(2k)!}\right) $

$\displaystyle =-\lim\limits_{h\to 0}\frac{1}{h^2}\sum\limits_{k=1}^\infty \left((-1)^{k-1}\binom h k + 2\binom h {2k}\right) \frac{(2k-1)!(2k)!}{(4k)!}$

$\displaystyle =-\sum\limits_{k=1}^\infty \frac{(2k-1)!(2k)!}{(4k)!}\lim\limits_{h\to 0}\frac{1}{h^2}\left((-1)^{k-1}\binom h k + 2\binom h {2k}\right)$

$\displaystyle =-\sum\limits_{k=1}^\infty \frac{(2k-1)!(2k)!}{(4k)!}\frac{H_{2k-1}-H_{k-1}}{k}= -2\sum\limits_{k=1}^\infty \frac{(2k-1)!^2}{(4k)!}\sum\limits_{v=0}^{k-1}\frac{1}{k+v}$


Additional comment:

$$\int_0^1\frac{\log(1-z(x-x^2))\log(1+z(x-x^2))}{x}dx= -2\sum\limits_{k=1}^\infty z^{2k}\frac{(2k-1)!^2}{(4k)!}\sum\limits_{v=0}^{k-1}\frac{1}{k+v}$$

for $\,z\in\mathbb{C}\,$ and $\,|z|\leq 1\,$ .

Related Question