Calculus – Evaluate ?_0^? (sin(tan(x))/x) dx

calculusdefinite integralsimproper-integralsintegration

I tried to solve it the Feynman way and defined:

$$I(a):=\int_0^{\infty} {\sin(\tan(a \cdot x)) \over x} \ dx$$

And look what happens when one substitutes $u=ax$ $(a>0)$:

$$I(a)=\int_0^{\infty} {\sin(\tan(u)) \over u} \ du = I(1)$$

Which implies that $I(a)=const$ for $a>0$. More generally $I(a)=c \cdot sign(a)$. I wonder whether this can help.

I recalled that in order to solve $\int_0^{\infty} {\sin(x) \over x} \ dx$ using the Feynman technique one had to define $I(a):=\int_0^{\infty} {\sin(x) \over x} e^{-a \cdot x}\ dx$ and differentiate it. Consequently I suspect we should define $I(a):=\int_0^{\infty} {\sin(\tan x) \over x} e^{-a \cdot x}\ dx$, but differentiation yields:

$$I'(a)=-\int_0^{\infty} {\sin(\tan x)} e^{-a \cdot x}\ dx$$

Which is another difficult integral.

Any help?

(please try to avoid gamma functions)

Best Answer

Notice $\tan x$ is a periodic function with period $\pi$ and recall following expansion:

$$\frac{1}{\tan x} = \lim_{N\to\infty}\sum_{n=-N}^N \frac{1}{x + n\pi}$$

The integral we seek $$\mathcal{I} \stackrel{def}{=} \int_0^\infty \frac{\sin\tan x}{x} dx = \frac12 \int_{-\infty}^\infty \frac{\sin\tan x}{x} dx = \frac12 \left(\sum_{n=-\infty}^\infty \int_{(n-\frac12)\pi}^{(n+\frac12)\pi}\right)\frac{\sin\tan x}{x}dx $$ can be rewritten as $$ \mathcal{I} = \frac12 \int_{-\frac12\pi}^{\frac12\pi}\sin\tan x\left(\sum_{n=-\infty}^\infty\frac{1}{x+n\pi}\right) dx = \frac12\int_{-\frac12\pi}^{\frac12\pi}\frac{\sin\tan x}{\tan x} dx $$ Change variable to $t = \tan x$, we get

$$\mathcal{I} = \frac12\int_{-\infty}^{\infty} \frac{\sin t}{t(1+t^2)} dt = \frac12\Im\left[\int_{-\infty}^{\infty}\frac{e^{it}-1}{t(1+t^2)} dt\right]$$

We can evaluate the integral on RHS as a contour integral. By completing the contour in upper half-plane and using the fact the integrand has only two poles at $t = \pm i$, we get:

$$\begin{align} \mathcal{I} &= \frac12\Im\left[ 2\pi i \, \mathop{\text{Res}}_{z = i}\left(\frac{e^{it}-1}{t(1+t^2)}\right)\right] = \pi\Re\left[ \frac{e^{i(i)} - 1}{i(i+i)}\right] = \frac{\pi}{2}\left(1 - \frac1e \right)\\ &\approx 0.9929326518994357602762750999834... \end{align} $$

Update

If one don't want to use contour integral, we can replace the last step by a Feymann trick. Consider the function

$$J(a) = \int_0^\infty \frac{\sin(at)}{t(1+t^2)}dt $$

It is easy to see $\mathcal{I} = J(1)$ and $J(a)$ satisfies following ODE for $a > 0$.

$$\left( -\frac{d^2}{da^2} + 1 \right)J(a) = \int_0^\infty \frac{\sin(at)}{t} dt = \int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}$$

This implies $\displaystyle\;J(a) = \frac{\pi}{2} + A e^a + B e^{-a}\;$ for suitably chosen constants $A, B$. Notice $$\begin{align} J(+\infty) &= \lim_{a\to+\infty} \int_0^\infty \frac{\sin t}{t\left(1 + \left(\frac{t}{a}\right)^2\right)} dt = \int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}\\ J'(0^{+}) &= \lim_{a\to 0^{+}} \int_0^\infty \frac{\cos(at)}{1+t^2} dt = \int_0^\infty \frac{dt}{1+t^2} = \frac{\pi}{2} \end{align}$$

This fixes $\;A = 0$, $\displaystyle\;B = -\frac{\pi}{2}\;$ and hence

$$J(a) = \frac{\pi}{2}\left(1 - e^{-a}\right) \quad\implies\quad \mathcal{I} = J(1) = \frac{\pi}{2}\left( 1 - \frac{1}{e}\right)$$

Related Question