[Math] Euclidean Algorithm for polynomials

euclidean-algorithmpolynomials

I know how to use the extended euclidean algorithm for finding the GCD of integers but not polynomials. I can't really find any good explanations of it online. The question here is to find the GCD of
m(x) = $\ x^3+6x+7 $ and n(x) = $\ x^2+3x+2 $.

I try to use it the same way as for integers but don't really get anywhere and just get huge lines without ever reducing it and getting closer to finding the GCD.

Best Answer

$$ \left( x^{3} + 6 x + 7 \right) $$

$$ \left( x^{2} + 3 x + 2 \right) $$

$$ \left( x^{3} + 6 x + 7 \right) = \left( x^{2} + 3 x + 2 \right) \cdot \color{magenta}{ \left( x - 3 \right) } + \left( 13 x + 13 \right) $$ $$ \left( x^{2} + 3 x + 2 \right) = \left( 13 x + 13 \right) \cdot \color{magenta}{ \left( \frac{ x + 2 }{ 13 } \right) } + \left( 0 \right) $$ $$ \frac{ 0}{1} $$ $$ \frac{ 1}{0} $$ $$ \color{magenta}{ \left( x - 3 \right) } \Longrightarrow \Longrightarrow \frac{ \left( x - 3 \right) }{ \left( 1 \right) } $$ $$ \color{magenta}{ \left( \frac{ x + 2 }{ 13 } \right) } \Longrightarrow \Longrightarrow \frac{ \left( \frac{ x^{2} - x + 7 }{ 13 } \right) }{ \left( \frac{ x + 2 }{ 13 } \right) } $$ $$ \left( x^{2} - x + 7 \right) \left( \frac{ 1}{13 } \right) - \left( x + 2 \right) \left( \frac{ x - 3 }{ 13 } \right) = \left( 1 \right) $$ $$ \left( x^{3} + 6 x + 7 \right) = \left( x^{2} - x + 7 \right) \cdot \color{magenta}{ \left( x + 1 \right) } + \left( 0 \right) $$ $$ \left( x^{2} + 3 x + 2 \right) = \left( x + 2 \right) \cdot \color{magenta}{ \left( x + 1 \right) } + \left( 0 \right) $$ $$ \mbox{GCD} = \color{magenta}{ \left( x + 1 \right) } $$ $$ \left( x^{3} + 6 x + 7 \right) \left( \frac{ 1}{13 } \right) - \left( x^{2} + 3 x + 2 \right) \left( \frac{ x - 3 }{ 13 } \right) = \left( x + 1 \right) $$

Related Question