[Math] estimate the maximum error of taylor approximation of $\ln(x)$

calculustaylor expansion

find the error bound using the Lagrange Remainder:
$$\ln(x)\approx (x-1)-\frac{(x-1)^2}{2}+\frac{(x-1)^3}{3}, |x-1|<\dfrac{1}{64}$$

My attempt:
\begin{align}
R_3(x)&=\dfrac{f^{(4)}(c)}{4!}(x-1)^4\\
f^{4}(c)&=\dfrac{-6}{(x-1)^4}\\
\implies R_3(x)&=\dfrac{-6}{4!}\dfrac{(x-1)^4}{(c-1)^4}\\
\implies |R_3(x)|&\leq \dfrac{6}{4!}\dfrac{(\frac{1}{64})^4}{(\frac{-1}{64})^4}=.25
\end{align}
Is this correct?

Best Answer

Note that,

\begin{equation} f(x) = log(x) \implies f^{(4)}(x) = \frac{-6}{x^4} \end{equation}

Therefore, \begin{equation} R_3(x) = -\frac{6}{4!c^4}(x-1)^4\quad; \quad \text{where } c \text{ is in between 1 and x} \end{equation}

Since $c$ depends on $x$, first find an upper bound as;

\begin{equation} |R_3(x)| \leq \begin{cases} \frac{6}{4!}(x-1)^4 \quad &if \quad x>1\\ \frac{6}{4!x^4}(x-1)^4 \quad &if \quad x<1 \end{cases} \end{equation}

Now we can bound for $|x-1|<1/64$,

\begin{equation} |R_3(x)| \leq \begin{cases} \frac{6}{4!64^4} \quad &if \quad x>1\\ \frac{6}{4!(1-1/64)^464^4} \quad &if \quad x<1 \end{cases} \end{equation}

Here is a plot done by wolframalpha.com. You can visaully see that we need two different bounds for $x<1$ and $x>1$. If you need a single bound, $x<1$ case will work.

Related Question