[Math] Equivalence Relations on Set of Ordered Pairs

discrete mathematicsequivalence-relations

Let $\mathbb{R}$ be the relation on $\mathbb{Z} \times \mathbb{Z}$, that is elements of this relation are pairs of pairs of integers, such that $((a,b),(c,d)) \in \mathbb{R}$ if and only if $a-d = c-b$. Can anyone give me a start on how to solve it to be transitive, reflexive and symmetric?

Best Answer

  • Reflexive: $\forall (a,b):\Bigl[(a,b)\in \mathbb{Z\times Z} \to \bigl((a,b),(a,b)\bigr)\in R\Bigr]$

  • Symmetric: $\forall (a,b,c,d): \Bigl[\bigl((a,b),(c,d)\bigr)\in R \leftrightarrow \bigl((c,d),(a,b)\bigr)\in R\Bigr]$

  • Transitive: $\forall (a,b,c,d)\exists (e,f): \Bigl[\bigl((a,b),(e,f)\bigr)\in R\land \bigl((e,f),(c,d)\bigr)\in R \leftrightarrow \bigl((a,b),(c,d)\bigr)\in R\Bigr]$

Show that these properties hold (or not) when $\Bigl[\bigl((a,b),(c,d)\bigr)\in R \Bigr]\iff\Bigl[ a-d=c-b\Bigr]$


Hint: $[a-d=c-b] \iff [a+b=c+d]$

Related Question