[Math] Equal angles formed by the tangent lines to an ellipse and the lines through the foci.

conic sectionsgeometry

Given an ellipse with foci $F_1, F_2$ and a point $P$. Let $T_1, T_2$ the points of tangency on the ellipse determined by the tangent lines through $P$. Show that $\widehat {T_1 P F_1} = \widehat {T_2 P F_2}$.

enter image description here

Best Answer

Let the ellipse be: $$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$$ Set $P(a,t)$, the tangent line $PT_1$ is $y=k(x-a)+t$, $k=\tan A_1$, since it is tangent line, so put in ellipse equation, we have: $$ b^2x^2+a^2(kx-ka+t)^2=a^2b^2$$ i.e., $$(b^2+a^2k^2)x^2+2a^2k(t-ka)x+a^2(t-ka)^2-a^2b^2=0$$ Solving for the point of tangency, the discriminant $\Delta$ must be zero: $$\Delta$=$4a^4k^2(t-ka)^2-4(b^2+a^2k^2)[a^2(t-ka)^2-a^2b^2] $$ At $\Delta=0$, we get $ 2kta-t^2+b^2=0$, that is, $k=\dfrac{t^2-b^2}{2ta}$.

Let $k_1$ be $PF_1$'s slope, $k_1=\dfrac{t}{a+c}=\tan A_2$, the $ \angle T_1PF_1=|A_1-A_2|$, now we calculate $\tan(A_1-A_2)$:

$$\tan(A_1-A_2)=\dfrac{\tan A_1-\tan A_2}{1+\tan A_1 \tan A_2}=\dfrac{k-k_1}{1+k k_1}=\dfrac{\dfrac{t^2-b^2}{2ta}-\dfrac{t}{a+c}}{1+\dfrac{t^2-b^2}{2ta}\dfrac{t}{a+c}}=\dfrac{(t^2-b^2)(a+c)-2at^2}{2at^2+2act+t^3-tb^2}$$

Since $b^2=a^2-c^2$, we get:

$$ RHS=\dfrac{(t^2-a^2+c^2)(a+c)-2at^2}{t(2a^2+2ac+t^2-a^2+c^2)}=\dfrac{c-a}{t}$$

Let $k_2$ be line $PF_2$'s slope, then $k_2=\dfrac{t}{a-c}=\tan\angle PF_2T_2$. Since $\angle T_2PF_2=\dfrac{\pi}{2}-\angle PF_2T_2$, so $\tan \angle T_2PF_2=\dfrac{1}{\tan\angle PF_2T_2}=\dfrac{a-c}{t}=\tan(A_2-A_1)$. Since the angles are acute, we have:

$\angle T_2PF_2=A_2-A_1=\angle T_1PF_1$